Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256142

RESUMO

To reduce the mortality and morbidity associated with cancer, new cancer theranostics are in high demand and are an emerging area of research. To achieve this goal, we report the synthesis and characterization of piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives (SA1-SA7). These compounds were synthesized in good yields following a two-step protocol and characterized using multiple analytical techniques. In vitro cytotoxicity and fluorescent cellular imaging of the compounds were assessed against non-cancerous fibroblast (3T3) and breast cancer (4T1) cell lines. Although the former study indicated the safe nature of the compounds (viability = 82-95% at 1 µg/mL), imaging studies revealed that the designed probes had good membrane permeability and could disperse in the whole cell cytoplasm. In silico studies, including molecular docking, molecular dynamics (MD) simulation, and ADME/Tox results, indicated that the compounds had the ability to target CAIX-expressing cancers. These findings suggest that piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives are potential candidates for cancer theranostics and a valuable backbone for future research.


Assuntos
Naftalimidas , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Piperazina , Imagem Molecular
2.
Front Chem ; 11: 1138057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936534

RESUMO

Background: Dates palm (Phoenix dactylifera L.) fruits are among the most widely used fruits in the Middle East and African nations. Numerous researchers confirmed the presence of phytochemicals in P. dactylifera L. fruit and its by-products with broad-ranging biological activities. Objectives: In the present work, phytochemical and biological assessments of two different cultivars of date fruit (Shishi M1 and Majdool M2 grown in the Ha'il region of Saudi Arabia) have been carried out. Methods: Date fruits were extracted and analyzed by gas chromatography-mass spectrometry (GS-MS),liquid chromatography-mass spectrometry (LC-MS) and Fourier-transform infrared spectroscopy (FT-IR)techniques. The lyophilized methanolic extracts were analyzed for their in-vitro antiproliferative andcytotoxicity against colon cancer (HCT116) cell line. To identify the possible constituents responsible for the bioactivity, in-silico molecular docking and molecular dynamics (MD) simulation studies were carried out. Results: Both cultivars exhibited in-vitro anticancer activity (IC50 = 591.3 µg/mL and 449.9 µg/mL for M1 and M2, respectively) against colon cancer HCT-116 cells. The computational analysis results indicated procyanidin B2 and luteolin-7-O-rutinoside as the active constituents. Conclusion: Based on these results, we conclude that these cultivars could be a valuable source for developing health promoter phytochemicals, leading to the development of the Ha'il region, Saudi Arabia.

3.
Polymers (Basel) ; 14(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36559812

RESUMO

Polymer colloids have remarkable features and are gaining importance in many areas of research including medicinal science. Presently, the innovation of cancer drugs is at the top in the world. Polymer colloids have been used as drug delivery and diagnosis agents in cancer treatment. The polymer colloids may be of different types such as micelles, liposomes, emulsions, cationic carriers, and hydrogels. The current article describes the state-of-the-art polymer colloids for the treatment of cancer. The contents of this article are about the role of polymeric nanomaterials with special emphasis on the different types of colloidal materials and their applications in targeted cancer therapy including cancer diagnoses. In addition, attempts are made to discuss future perspectives. This article will be useful for academics, researchers, and regulatory authorities.

4.
Antioxidants (Basel) ; 10(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34439425

RESUMO

In diabetic patients, high glucose and high oxidative states activate gene expression of transforming growth factor beta (TGF-ß) and further translocate Smad proteins into the nucleus of renal cells. This signal pathway is characterized as the onset of diabetic nephropathy. Puerarin is an active ingredient extracted from Pueraria lobata as an anti-hyperglycemic and anti-oxidative agent. However, the poor oral availability and aqueous solubility limit its pharmaceutical applications. The present paper reports the liposomal puerarin and its protective effect on high glucose-injured rat mesangial cells (RMCs). The purity of puerarin extracted from the root of plant Pueraria lobata was 83.4% as determined by the high-performance liquid chromatography (HPLC) method. The liposomal puerarin was fabricated by membrane hydration followed by ultrasound dispersion and membrane extrusion (pore size of 200 nm). The fabricated liposomes were examined for the loading efficiency and contents of puerarin, the particle characterizations, the radical scavenge and the protective effect in rat mesangial cells, respectively. When the liposomes were subjected to 20 times of membrane extrusion, the particle size of liposomal puerarin can be reduced to less than 200 nm. When liposomal puerarin in RMCs in high glucose concentration (33 mM) was administered, the over-expression of TGF-ß and the nuclear translocation of Smad 2/3 proteins was both inhibited. Therefore, this study successfully prepared the liposomal puerarin and showed the cytoprotective effect in RMCs under high glucose condition.

5.
Sci Rep ; 11(1): 12001, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099817

RESUMO

Staphylococcus epidermidis (S. epidermidis) ATCC 12228 was incubated with 2% polyethylene glycol (PEG)-8 Laurate to yield electricity which was measured by a voltage difference between electrodes. Production of electron was validated by a Ferrozine assay. The anti-Cutibacterium acnes (C. acnes) activity of electrogenic S. epidermidis was assessed in vitro and in vivo. The voltage change (~ 4.4 mV) reached a peak 60 min after pipetting S. epidermidis plus 2% PEG-8 Laurate onto anodes. The electricity produced by S. epidermidis caused significant growth attenuation and cell lysis of C. acnes. Intradermal injection of C. acnes and S. epidermidis plus PEG-8 Laurate into the mouse ear considerably suppressed the growth of C. acnes. This suppressive effect was noticeably reversed when cyclophilin A of S. epidermidis was inhibited, indicating the essential role of cyclophilin A in electricity production of S. epidermidis against C. acnes. In summary, we demonstrate for the first time that skin S. epidermidis, in the presence of PEG-8 Laurate, can mediate cyclophilin A to elicit an electrical current that has anti-C. acnes effects. Electricity generated by S. epidermidis may confer immediate innate immunity in acne lesions to rein in the overgrowth of C. acnes at the onset of acne vulgaris.


Assuntos
Acne Vulgar/terapia , Antibiose/genética , Proteínas de Bactérias/genética , Ciclofilina A/genética , Propionibacteriaceae/patogenicidade , Staphylococcus epidermidis/efeitos dos fármacos , Acne Vulgar/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Meios de Cultura/química , Meios de Cultura/farmacologia , Ciclofilina A/metabolismo , Modelos Animais de Doenças , Orelha/microbiologia , Eletricidade , Eletrodos , Feminino , Expressão Gênica , Lauratos/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Polietilenoglicóis/farmacologia , Propionibacteriaceae/crescimento & desenvolvimento , Pele/microbiologia , Staphylococcus epidermidis/fisiologia , Tensoativos/farmacologia
6.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809762

RESUMO

Microglia-mediated neuroinflammation is recognized to mainly contribute to the progression of neurodegenerative diseases. Epigallocatechin-3-gallate (EGCG), known as a natural antioxidant in green tea, can inhibit microglia-mediated inflammation and protect neurons but has disadvantages such as high instability and low bioavailability. We developed an EGCG liposomal formulation to improve its bioavailability and evaluated the neuroprotective activity in in vitro and in vivo neuroinflammation models. EGCG-loaded liposomes have been prepared from phosphatidylcholine (PC) or phosphatidylserine (PS) coated with or without vitamin E (VE) by hydration and membrane extrusion method. The anti-inflammatory effect has been evaluated against lipopolysaccharide (LPS)-induced BV-2 microglial cells activation and the inflammation in the substantia nigra of Sprague Dawley rats. In the cellular inflammation model, murine BV-2 microglial cells changed their morphology from normal spheroid to activated spindle shape after 24 h of induction of LPS. In the in vitro free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, EGCG scavenged 80% of DPPH within 3 min. EGCG-loaded liposomes could be phagocytized by BV-2 cells after 1 h of cell culture from cell uptake experiments. EGCG-loaded liposomes improved the production of BV-2 microglia-derived nitric oxide and TNF-α following LPS. In the in vivo Parkinsonian syndrome rat model, simultaneous intra-nigral injection of EGCG-loaded liposomes attenuated LPS-induced pro-inflammatory cytokines and restored motor impairment. We demonstrated that EGCG-loaded liposomes exert a neuroprotective effect by modulating microglia activation. EGCG extracted from green tea and loaded liposomes could be a valuable candidate for disease-modifying therapy for Parkinson's disease (PD).


Assuntos
Anti-Inflamatórios/farmacologia , Catequina/análogos & derivados , Microglia/patologia , Neuroproteção/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Catequina/farmacologia , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Lipossomos , Camundongos , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo
7.
Microorganisms ; 8(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756446

RESUMO

The activation of peroxisome proliferator-activated rece ptor gamma (PPAR-γ) is known to induce the differentiation of adipocytes. This study aimed to investigate the probiotic effect of Leuconostoc mesenteroides (L. mesenteroides) on high-fat diet (HFD)-induced PPAR-γ activation and abdominal fat depots. Incubation of differentiated 3T3-L1 adipocytes with media of L. mesenteroides EH-1, a butyric acid-producing strain, significantly reduced the amounts of lipid droplets. The oral administration of L. mesenteroides EH-1 produced large amounts (>1 mM) of butyric acid in cecum and attenuated the HFD-induced upregulation of PPAR-γ and accumulation of abdominal fats in mice. The combination of 2% glucose with L. mesenteroides EH-1 increased the production of butyric acid and potentiated the probiotic activity of L. mesenteroides EH-1 against the formation of lipid droplets in 3T3-L1 adipocytes as well as abdominal fats in HFD-fed mice. The inhibition of free fatty acid receptor 2 (Ffar2) by its antagonist, GLPG-0974, markedly diminished the probiotic effects of L. mesenteroides EH-1 plus glucose on the suppression of HFD-induced PPAR-γ and abdominal fats. Besides demonstrating the probiotic value of L. mesenteroides EH-1, our results highlight the possible therapy targeting the butyric acid-activated Ffar2 pathway to reduce abdominal fats.

8.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481556

RESUMO

Inflammation is a hallmark of many metabolic diseases. We previously showed that ferrocene-appended 1H-1,2,3-triazole hybrids inhibit nitric oxide (NO) production in in vitro models of lipopolysaccharide-induced inflammation in the BV-2 cell. In the present study, we explored the viability, anti-inflammatory, and antioxidant potential of ferrocene-1H-1,2,3-triazole hybrids using biochemical assays in rat mesangial cells (RMCs). We found that, among all the ferrocene-1H-1,2,3-triazole hybrids, X2-X4 exhibited an antioxidant effect on mitochondrial free radicals. Among all the studied compounds, X4 demonstrated the best anti-inflammatory effect on RMCs. These results were supplemented by in silico studies including molecular docking with human cytosolic phospholipase A2 (cPLA2) and cyclooxygenase 2 (COX-2) enzymes as well as absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling. Besides, two new crystal structures of the compounds have also been reported. In addition, combining the results from the inducible nitric oxide synthase (iNOS), cPLA2, COX-2, and matrix metalloproteinase-9 (MMP-9) enzymatic activity analysis and NO production also confirmed this argument. Overall, the results of this study will be a valuable addition to the growing body of work on biological activities of triazole-based compounds.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Nefropatias/tratamento farmacológico , Células Mesangiais/efeitos dos fármacos , Triazóis/farmacologia , Animais , Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Celobiose/análogos & derivados , Cristalografia por Raios X , Ciclo-Oxigenase 2/metabolismo , Radicais Livres , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Células Mesangiais/metabolismo , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos
9.
Int J Pharm ; 582: 119314, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32283197

RESUMO

Nanotheranostics is fast-growing pharmaceutical technology for simultaneously monitoring drug release and its distribution, and to evaluate the real time therapeutic efficacy through a single nanoscale for treatment and diagnosis of deadly disease such as cancers. In recent two decades, biodegradable polymers have been discovered as important carriers to accommodate therapeutic and medical imaging agents to facilitate construction of multi-modal formulations. In this review, we summarize various multifunctional polymeric nano-sized formulations such as polymer-based super paramagnetic nanoparticles, ultrasound-triggered polymeric nanoparticles, polymeric nanoparticles bearing radionuclides, and fluorescent polymeric nano-sized formulations for purpose of theranostics. The use of such multi-modal nano-sized formulations for near future clinical trials can assist clinicians to predict therapeutic properties (for instance, depending upon the quantity of drug accumulated at the cancerous site) and observed the progress of tumor growth in patients, thus improving tailored medicines.


Assuntos
Antineoplásicos/administração & dosagem , Meios de Contraste/administração & dosagem , Portadores de Fármacos , Nanopartículas , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Polímeros/química , Compostos Radiofarmacêuticos/administração & dosagem , Nanomedicina Teranóstica , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Meios de Contraste/química , Composição de Medicamentos , Humanos , Neoplasias/metabolismo , Valor Preditivo dos Testes , Prognóstico , Compostos Radiofarmacêuticos/química
10.
Polymers (Basel) ; 12(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155695

RESUMO

Cancer is a life-threatening disease killing millions of people globally. Among various medical treatments, nano-medicines are gaining importance continuously. Many nanocarriers have been developed for treatment, but polymerically-based ones are acquiring importance due to their targeting capabilities, biodegradability, biocompatibility, capacity for drug loading and long blood circulation time. The present article describes progress in polymeric nano-medicines for theranostic cancer treatment, which includes cancer diagnosis and treatment in a single dosage form. The article covers the applications of natural and synthetic polymers in cancer diagnosis and treatment. Efforts were also made to discuss the merits and demerits of such polymers; the status of approved nano-medicines; and future perspectives.

11.
Microorganisms ; 8(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973160

RESUMO

Methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) has become an alarming threat to public health, and infected soft tissue. Antibiotics are commonly used to treat skin infection with MRSA, but the inappropriate use of antibiotics runs a considerable risk of generating resistant S. aureus. In this study, we created a cysteine-capped hydrogel able to absorb and release copper, an ion with the capability of suppressing the growth of USA300, a community-acquired MRSA. The results of analysis of Fourier transform infrared spectroscopy (FTIR) revealed the binding of copper to a cysteine-capped hydrogel. The topical application of a cysteine-capped hydrogel binding with copper on USA300-infected skin wounds in the dorsal skin of Institute of Cancer Research (ICR) mice significantly enhanced wound healing, hindered the growth of USA300, and reduced the production of pro-inflammatory macrophage inflammatory protein 2-alpha (MIP-2) cytokine. Our work demonstrates a newly designed hydrogel that conjugates a cysteine molecule for copper binding. The cysteine-capped hydrogel can potentially chelate various antimicrobial metals as a novel wound dressing.

12.
Sci Rep ; 9(1): 5832, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967579

RESUMO

Multiple injections of bone marrow mesenchymal stem cells (BMMSCs) have been used for treatment of chronic colitis in mice. We aimed to report the therapeutic effects of a single injection of human umbilical cord mesenchymal stem cells (hUCMSCs) on acute and chronic colitis. Male C57BL/6JNarl mice were divided into control, phosphate-buffered saline (PBS), and hUCMSCs treated groups, respectively. Acute and chronic colitis were induced in the mice (except controls) using 3% dextran sulfate sodium (DSS). The mice in the hUCMSCs group underwent a single injection of hUCMSCs. The disease activity index (DAI), colon length, histology, colon inflammation score, in vivo stem cells images, and blood cytokine levels were recorded. The DAI was significantly higher in the hUCMSCs group than in the control group and lower than in the PBS group on all days. The colon length was significantly longer and the colon inflammation score was significantly lower in the hUCMSCs group than in the PBS group on days 8 and 25. IL17A, Gro-α, MIP-1α, MIP-2, and eotaxin were significantly lower in the hUCMSCs group than in the PBS group on days 8 and 25. Single-injection hUCMSCs improved DSS-induced acute colitis and decreased progression of acute colitis to chronic colitis.


Assuntos
Colite/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Resultado do Tratamento
13.
Cytokine ; 113: 380-392, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389230

RESUMO

INTRODUCTION: Resveratrol has been reported to alleviate inflammatory responses and oxidative stress in mesangial cells and in several types of renal injury in animal models. Previously, the active resveratrol derivatives from the roots of Vitis thunbergii Sieb. & Zucc. (Vitaceae) were shown to have significant anti-platelet and anti-oxidative activities. However, the anti-inflammatory mechanisms of these resveratrol derivatives in rat mesangial cells (RMCs) have not been clarified fully. METHODS: The protective mechanisms of resveratrol derivatives involved in tumor necrosis factor-α (TNF-α)-induced inflammatory responses were assessed by Western blot analysis, real-time PCR, and RT-PCR. The involvement of various signaling molecules in these responses was investigated using selective pharmacological inhibitors. RESULTS: Nontoxic concentrations of the resveratrol derivatives significantly attenuated cytosolic phospholipase A2 (cPLA2) and cyclooxygenase 2 (COX-2) expression in RMCs challenged by TNF-α. These resveratrol derivatives inhibited TNF-α-activated ERK1/2 and JNK1/2 without affecting p38 phosphorylation. Next, we demonstrated that TNF-α induced NF-κB activation, translocation, and promoter activity, which was inhibited by pretreatment with resveratrol derivatives in RMCs. CONCLUSION: The protective mechanisms of resveratrol derivatives against TNF-α-stimulated inflammatory responses via cPLA2/COX-2/PGE2 inhibition was caused by the attenuation of the JNK1/2, ERK1/2, and NF-κB signaling pathways in RMCs.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Mesangiais/metabolismo , Resveratrol/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Células Mesangiais/patologia , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Int J Mol Sci ; 19(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642550

RESUMO

Articular cartilage is a structure lack of vascular distribution. Once the cartilage is injured or diseased, it is unable to regenerate by itself. Surgical treatments do not effectively heal defects in articular cartilage. Tissue engineering is the most potential solution to this problem. In this study, methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) and hydroxyapatite at a weight ratio of 2:1 were mixed via fused deposition modeling (FDM) layer by layer to form a solid scaffold. The scaffolds were further infiltrated with glycidyl methacrylate hyaluronic acid loading with 10 ng/mL of Transforming Growth Factor-ß1 and photo cross-linked on top of the scaffolds. An in vivo test was performed on the knees of Lanyu miniature pigs for a period of 12 months. The healing process of the osteochondral defects was followed by computer tomography (CT). The defect was fully covered with regenerated tissues in the control pig, while different tissues were grown in the defect of knee of the experimental pig. In the gross anatomy of the cross section, the scaffold remained in the subchondral location, while surface cartilage was regenerated. The cross section of the knees of both the control and experimental pigs were subjected to hematoxylin and eosin staining. The cartilage of the knee in the experimental pig was partially matured, e.g., few chondrocyte cells were enclosed in the lacunae. In the knee of the control pig, the defect was fully grown with fibrocartilage. In another in vivo experiment in a rabbit and a pig, the composite of the TGF-ß1-loaded hydrogel and scaffolds was found to regenerate hyaline cartilage. However, scaffolds that remain in the subchondral lesion potentially delay the healing process. Therefore, the structural design of the scaffold should be reconsidered to match the regeneration process of both cartilage and subchondral bone.


Assuntos
Materiais Biomiméticos/farmacologia , Cartilagem Articular/lesões , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta1/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Materiais Biomiméticos/química , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Durapatita/química , Poliésteres/química , Suínos , Porco Miniatura , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/química
15.
Polymers (Basel) ; 10(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-30966553

RESUMO

Although epigallocatechin-3-gallate (EG) is well-known as a potent antioxidant and free radical scavenger for neurodegenerative diseases, it still has disadvantages that reduce its treatment effectiveness due to low bioavailability, slow absorption, and water solubility. Therefore, the aim of this study is to improve the bioavailability of EG and increase the effectiveness of anti-inflammatory properties to microglial cells by using Poly(Lactide-co-Glycolide) (PLGA) microspheres as carriers. In this study, we used UV⁻Vis spectroscopy to show the formation of the complex of ß-cyclodextrin (ß-CD) and EG (CD-EG). The loading efficiency of EG in PLGA microspheres was optimized by the addition of ß-CD. The highest loading efficiency of 16.34% was found among other formulations. The results of Fourier transform infrared spectroscopy indicated the loading of CD-EG in PLGA microspheres. The scanning electron microscopic images demonstrated the spherical PLGA particles with controlled particles size ranging from 1⁻14 µm. Moreover, the in vitro release of EG was conducted to explore the sustained release property of the PLGA formulations. In the in vitro model of mouse microglial cells (BV-2 cells) stimulated by lipopolysaccharide, the cytotoxicity test showed that for up to 1 mg/mL of PLGA microspheres no toxicity to BV-2 cells was found. PLGA microspheres can significantly suppress the nitric oxide production from BV-2 cells, indicating EG loaded in PLGA microspheres can suppress the inflammation of activated microglial cells. Furthermore, the intracellular iNOS in BV-2 cells was also found to be down regulated. In summary, we have successfully shown that the use of ß-CD can increase the loading efficiency of EG in PLGA microspheres and provide neuroprotective effect on the activated microglial cells.

16.
RSC Adv ; 8(66): 37905-37914, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35558619

RESUMO

Facile synthesis of micellar "nano" indole heterocyclic anti-cancer compounds is described. The synthesized compounds (11-23) were characterized by UV-VIS, 1H NMR, FT-IR and mass spectroscopy. The binding energies of DNA-compound adducts varied from -20.08 to -23.85 kJ mol-1, and they were stabilized by hydrophobic interactions and H-bonding. The synthesized compounds enter into minor grooves of DNA during adduct formation. The DNA binding constant of compounds 11-23 was 1.00 to 2.00 × 105 M-1. The drug-loading efficiency and drug-loading content in their micellar forms were recorded. Compounds 11, 12, 14 and 19 at a micellar concentration of 670 µL mL-1 displayed excellent anticancer activities against the HepG2/C3A line (25-50%). The potency of nano anticancer drugs was predicted by drug likeness using Lipinski's "rule of five". Taken together, compounds 11-23 could be used to treat cancers.

17.
Polymers (Basel) ; 9(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970861

RESUMO

The aim of this study was to report the fabrication of porous scaffolds with pre-designed internal pores using a fused deposition modeling (FDM) method. Polycaprolactone (PCL) is a suitable material for the FDM method due to the fact it can be melted and has adequate flexural modulus and strength to be formed into a filament. In our study, the filaments of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) having terminal groups of carboxylic acid were deposited layer by layer. Raw materials having a weight ratio of hydroxyapatite (HAp) to polymer of 1:2 was used for FDM. To promote cell adhesion, amino groups of the Arg-Gly-Asp(RGD) peptide were condensed with the carboxylic groups on the surface of the fabricated scaffold. Then the scaffold was infiltrated with hydrogel of glycidyl methacrylate hyaluronic acid loading with 10 ng/mL of TGF-ß1 and photo cross-linked on the top of the scaffolds. Serious tests of mechanical and biological properties were performed in vitro. HAp was found to significantly increase the compressive strength of the porous scaffolds. Among three orientations of the filaments, the lay down pattern 0°/90° scaffolds exhibited the highest compressive strength. Fluorescent staining of the cytoskeleton found that the osteoblast-like cells and stem cells well spread on RGD-modified PEG-PCL film indicating a favorable surface for the proliferation of cells. An in vivo test was performed on rabbit knee. The histological sections indicated that the bone and cartilage defects produced in the knees were fully healed 12 weeks after the implantation of the TGF-ß1 loaded hydrogel and scaffolds, and regenerated cartilage was hyaline cartilage as indicated by alcian blue and periodic acid-schiff double staining.

18.
Biotechnol J ; 12(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27982519

RESUMO

Recent creation of a Unified Microbiome Initiative (UMI) has the aim of understanding how microbes interact with each other and with us. When pathogenic Staphylococcus aureus infects the skin, the interplay between S. aureus and skin commensal bacteria occurs. Our previous data revealed that skin commensal bacteria can mediate fermentation against the growth of USA300, a community-acquired methicillin-resistant S. aureus MRSA. By using a fermentation process with solid media on a small scale, we define poly(ethylene glycol) dimethacrylate (PEG-DMA) as a selective fermentation initiator which can specifically intensify the probiotic ability of skin commensal Staphylococcus epidermidis bacteria. At least five short-chain fatty acids including acetic, butyric and propionic acids with anti-USA300 activities are produced by PEG-DMA fermentation of S. epidermidis. Furthermore, the S. epidermidis-laden PEG-DMA hydrogels effectively decolonized USA300 in skin wounds in mice. The PEG-DMA and its derivatives may become novel biomaterials to specifically tailor the human skin microbiome against invading pathogens.


Assuntos
Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Microbiota/genética , Probióticos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Animais , Fermentação/efeitos dos fármacos , Humanos , Hidrogéis/química , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Microbiota/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Pele/efeitos dos fármacos , Pele/lesões , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus epidermidis/efeitos dos fármacos
19.
J Microb Biochem Technol ; 8(4): 259-265, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28111598

RESUMO

Many human skin diseases, such as seborrheic dermatitis, potentially occur due to the over-growth of fungi. It remains a challenge to develop fungicides with a lower risk of generating resistant fungi and non-specifically killing commensal microbes. Our probiotic approaches using a selective fermentation initiator of skin commensal bacteria, fermentation metabolites or their derivatives provide novel therapeutics to rein in the over-growth of fungi. Staphylococcus lugdunensis (S. lugdunensis) bacteria and Candida parapsilosis (C. parapsilosis) fungi coexist in the scalp microbiome. S. lugdunensis interfered with the growth of C. parapsilosis via fermentation. A methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) copolymer functioned as a selective fermentation initiator of S. lugdunensis, selectively triggering the S. lugdunensis fermentation to produce acetic and isovaleric acids. The acetic acid and its pro-drug diethyleneglycol diacetate (Ac-DEG-Ac) effectively suppressed the growth of C. parapsilosis in vitro and impeded the fungal expansion in the human dandruff. We demonstrate for the first time that S. lugdunensis is a skin probiotic bacterium that can exploit mPEG-PCL to yield fungicidal short-chain fatty acids (SCFAs). The concept of bacterial fermentation as a part of skin immunity to re-balance the dysbiotic microbiome warrants a novel avenue for studying the probiotic function of the skin microbiome in promoting health.

20.
Polymers (Basel) ; 8(9)2016 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30974595

RESUMO

Acne is the over growth of the commensal bacteria Propionibacterium acnes (P. acnes) on human skin. Lauric acid (LA) has been investigated as an effective candidate to suppress the activity of P. acnes. Although LA is nearly insoluble in water, dimethyl sulfoxide (DMSO) has been reported to effectively solubilize LA. However, the toxicity of DMSO can limit the use of LA on the skin. In this study, LA-loaded poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) micelles (PCL-PEG-PCL) were developed to improve the bactericidal effect of free LA on P. acnes. The block copolymers mPEG-PCL and PCL-PEG-PCL with different molecular weights were synthesized and characterized using ¹H Nuclear Magnetic Resonance spectroscopy (¹H NMR), Fourier-transform infrared spectroscopy (FT-IR), Gel Permeation Chromatography (GPC), and Differential Scanning Calorimetry (DSC). In the presence of LA, mPEG-PCL diblock copolymers did not self-assemble into nano-sized micelles. On the contrary, the average particle sizes of the PCL-PEG-PCL micelles ranged from 50⁻198 nm for blank micelles and 27⁻89 nm for LA-loaded micelles. The drug loading content increased as the molecular weight of PCL-PEG-PCL polymer increased. Additionally, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of free LA were 20 and 80 µg/mL, respectively. The MICs and MBCs of the micelles decreased to 10 and 40 µg/mL, respectively. This study demonstrated that the LA-loaded micelles are a potential treatment for acne.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA