Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065160

RESUMO

The National Diagnostic Working Group (NDWG) has led the effort to fully exploit the major inertial confinement fusion/high-energy density facilities in the US with the best available diagnostics. These diagnostics provide key data used to falsify early theories for ignition and suggest new theories, recently leading to an experiment that exceeds the Lawson condition required for ignition. The factors contributing to the success of the NDWG, collaboration and scope evolution, and the methods of accomplishment of the NDWG are discussed in this Review. Examples of collaborations in neutron and gamma spectroscopy, x-ray and neutron imaging, x-ray spectroscopy, and deep-ultraviolet Thomson scattering are given. An abbreviated history of the multi-decade collaborations and the present semiformal management framework is given together with the latest National Diagnostic Plan.

2.
Rev Sci Instrum ; 93(10): 103510, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319336

RESUMO

In support of future radiation-effects testing, a combined environment source has been developed for the National Ignition Facility (NIF), utilizing both NIF's long-pulse beams, and the Advanced Radiographic Capability (ARC) short pulse lasers. First, ARC was used to illuminate a gold foil at high-intensity, generating a significant x-ray signal >1 MeV. This was followed by NIF 10 ns later to implode an exploding pusher target filled with fusionable gas for neutron generation. The neutron and x-ray bursts were incident onto a retrievable, close-standoff diagnostic snout. With separate control over both neutron and x-ray emission, the platform allows for tailored photon and neutron fluences and timing on a recoverable test sample. The platform exceeded its initial fluence goals, demonstrating a neutron fluence of 2.3 ×1013 n/cm2 and an x-ray dose of 7 krad.

3.
Phys Rev Lett ; 127(12): 125001, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597087

RESUMO

Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.

4.
Rev Sci Instrum ; 92(4): 043543, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243465

RESUMO

Diagnosing plasma magnetization in inertial confinement fusion implosions is important for understanding how magnetic fields affect implosion dynamics and to assess plasma conditions in magnetized implosion experiments. Secondary deuterium-tritium (DT) reactions provide two diagnostic signatures to infer neutron-averaged magnetization. Magnetically confining fusion tritons from deuterium-deuterium (DD) reactions in the hot spot increases their path lengths and energy loss, leading to an increase in the secondary DT reaction yield. In addition, the distribution of magnetically confined DD-triton is anisotropic, and this drives anisotropy in the secondary DT neutron spectra along different lines of sight. Implosion parameter space as well as sensitivity to the applied B-field, fuel ρR, temperature, and hot-spot shape will be examined using Monte Carlo and 2D radiation-magnetohydrodynamic simulations.

5.
Rev Sci Instrum ; 92(3): 033544, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819995

RESUMO

We present experimental studies of inverted-corona targets as neutron sources at the OMEGA Laser Facility and the National Ignition Facility (NIF). Laser beams are directed onto the inner walls of a capsule via laser-entrance holes (LEHs), heating the target interior to fusion conditions. The fusion fuel is provided either as a wall liner, e.g., deuterated plastic (CD), or as a gas fill, e.g., D2 gas. Such targets are robust to low-mode drive asymmetries, allowing for single-sided laser drive. On OMEGA, 1.8-mm-diameter targets with either a 10-µm CD liner or up to 2 atm of D2-gas fill were driven with up to 18 kJ of laser energy in a 1-ns square pulse. Neutron yields of up to 1.5 × 1010 generally followed expected trends with fill pressure or laser energy, although the data imply some mix of the CH wall into the fusion fuel for either design. Comparable performance was observed with single-sided (1x LEH) or double-sided (2x LEH) drive. NIF experiments tested the platform at scaled up dimensions and energies, combining a 15-µm CD liner and a 3-atm D2-gas fill in a 4.5-mm diameter target, laser-driven with up to 330 kJ. Neutron yields up to 2.6 × 1012 were measured, exceeding the scaled yield expectation from the OMEGA data. The observed energy scaling on the NIF implies that the neutron production is gas dominated, suggesting a performance boost from using deuterium-tritium (DT) gas. We estimate that neutron yields exceeding 1014 should be readily achievable using a modest laser drive of ∼300 kJ with a DT fill.

6.
Phys Rev E ; 102(5-1): 051201, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327093

RESUMO

Experiments on the National Ignition Facility (NIF) to study hohlraums lined with a 20-mg/cc 400-µm-thick Ta_{2}O_{5} aerogel at full scale (hohlraum diameter = 6.72 mm) are reported. Driven with a 1.6-MJ, 450-TW laser pulse, the performance of the foam liner is diagnosed using implosion hot-spot symmetry measurements of the high-density carbon (HDC) capsule and measurement of inner beam propagation through a thin-wall 8-µm Au window in the hohlraum. Results show an improved capsule performance due to laser energy deposition further inside the hohlraum, leading to a modest increase in x-ray drive and reduced preheat due to changes in the x-ray spectrum when the foam liner is included. In addition, the outer cone bubble uniformity is improved, but the predicted improvement in inner beam propagation to improve symmetry control is not realized for this foam thickness and density.

7.
Phys Rev Lett ; 125(15): 155003, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095614

RESUMO

The implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.

8.
Rev Sci Instrum ; 89(10): 10G107, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399661

RESUMO

A high speed solid-state framing camera has been developed which can operate in interferometric mode. This camera measures the change in the index of refraction of a semiconductor when x-rays are incident upon it. This instrument uses an x-ray transmission grating/mask in front of the semiconductor to induce a corresponding phase grating in the semiconductor which can then be measured by an infrared probe beam. The probe beam scatters off of this grating, enabling a measure of the x-ray signal incident on the semiconductor. In this particular instrument, the zero-order reflected probe beam is attenuated and interfered with the diffracted orders to produce an interferometric image on a charge coupled device camera of the phase change induced inside the semiconductor by the incident x-rays.

9.
Phys Rev Lett ; 114(14): 145004, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910132

RESUMO

Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 µm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

10.
Phys Rev Lett ; 112(18): 185003, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856703

RESUMO

Ignition experiments have shown an anomalous susceptibility to hydrodynamic instability growth. To help understand these results, the first hydrodynamic instability growth measurements in indirectly driven implosions on the National Ignition Facility were performed at ignition conditions with peak radiation temperatures up to ∼300 eV. Plastic capsules with two-dimensional preimposed, sinusoidal outer surface modulations of initial wavelengths of 240 (corresponding to a Legendre mode number of 30), 120 (mode 60), and 80 µm (mode 90) were imploded by using actual low-adiabat ignition laser pulses. The measured growth was in excellent agreement, validating 2D hydra simulations for the most dangerous modes in the acceleration phase. These results reinforce confidence in the predictive capability of calculations that are paramount to illuminating the path toward ignition.

11.
Phys Rev Lett ; 112(10): 105003, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679301

RESUMO

Indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%-25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the data from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.

12.
Phys Rev Lett ; 112(2): 025002, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484021

RESUMO

We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294 eV. While the TT fusion reaction probes conditions in the central part (core) of the implosion hot spot, the DT reaction probes a mixed region on the outer part of the hot spot near the ablator-hot-spot interface. Experimental data were used to develop and validate the atomic-mix model used in two-dimensional simulations.

13.
Phys Rev Lett ; 111(21): 215001, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313493

RESUMO

Radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm2, representing a significant step from previously measured ~1.0 g/cm2 toward a goal of 1.5 g/cm2. Future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

14.
Phys Rev Lett ; 111(8): 085004, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010449

RESUMO

Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

15.
Rev Sci Instrum ; 83(10): 10D307, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126834

RESUMO

We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility (JLF). This technology will enable x-ray bang-time and fusion burn-history measurements with ∼ ps resolution.

16.
Rev Sci Instrum ; 83(10): 10E127, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126948

RESUMO

Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints of the NIF facility environment, we have explored the use of Doppler broadening of mid-Z dopant emission lines, such as krypton He-α at 13 keV, as a diagnostic of time- and potentially space-resolved ion temperature. We have investigated a number of options analytically and with numerical raytracing, and we have identified several promising candidate spectrometer designs that meet the expected requirements of spectral and temporal resolution and data signal-to-noise ratio for gas-filled exploding pusher implosions, while providing maximum flexibility for use on a variety of experiments that potentially include burning plasma.

17.
Phys Rev Lett ; 106(8): 085003, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21405579

RESUMO

The first soft x-ray radiation flux measurements from hohlraums using both a 96 and a 192 beam configuration at the National Ignition Facility have shown high x-ray conversion efficiencies of ∼85%-90%. These experiments employed gold vacuum hohlraums, 6.4 mm long and 3.55 mm in diameter, heated with laser energies between 150-635 kJ. The hohlraums reached radiation temperatures of up to 340 eV. These hohlraums for the first time reached coronal plasma conditions sufficient for two-electron processes and coronal heat conduction to be important for determining the radiation drive.

18.
Rev Sci Instrum ; 79(10): 10E915, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044570

RESUMO

We have successfully demonstrated a 7.5 ns duration pinhole-apertured backlighter at the Omega laser facility. Pinhole-apertured point-projection backlighting for 8 ns will be useful for imaging evolving features in experiments at the National Ignition Facility. The backlighter consisted of a 20 microm diameter pinhole in a 75 microm thick Ta substrate separated from a Zn emitter (9 keV) by a 400 microm thick high-density carbon piece. The carbon prevented the shock from the laser-driven surface from reaching the substrate before 8 ns and helped minimize x-ray ablation of the pinhole substrate. Grid wires in x-ray framing camera images of a gold grid have a source-limited resolution significantly smaller than the pinhole diameter due to the high aspect ratio of the pinhole, but do not become much smaller at late times.

19.
Phys Rev Lett ; 94(9): 095005, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15783974

RESUMO

The first hydrodynamic experiments were performed on the National Ignition Facility. A supersonic jet was formed via the interaction of a laser driven shock ( approximately 40 Mbar) with 2D and 3D density perturbations. The temporal evolution of the jet's spatial scales and ejected mass were measured with point-projection x-ray radiography. Measurements of the large-scale features and mass are in good agreement with 2D and 3D numerical simulations. These experiments provide quantitative data on the evolution of 3D supersonic jets and provide insight into their 3D behavior.

20.
Phys Rev Lett ; 87(27 Pt 1): 275003, 2001 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-11800887

RESUMO

Novel, efficient x-ray sources have been created by supersonically heating a large volume of Xe gas. A laser-induced bleaching wave quickly ionizes the high- Z gas, and the resulting plasma emits x rays. This method significantly improves the production of hard x rays because less energy is lost to kinetic energy and sub-keV x rays. The conversion efficiency of laser energy into L-shell radiation between 4-7 keV is measured at approximately 10%, an order of magnitude higher than efficiencies measured from solid disk targets. This higher flux enables material testing and backlighting in new regimes and scales well to future high-powered lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA