Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993618

RESUMO

Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million deaths worldwide each year. Yet the arsenal of antifungal therapeutics remains limited and is in dire need of novel drugs that target additional fungal-specific biosynthetic pathways. One such pathway involves the biosynthesis of trehalose. Trehalose is a non-reducing disaccharide composed of two molecules of glucose that is required for pathogenic fungi, including Candida albicans and Cryptococcus neoformans, to survive in their human hosts. Trehalose biosynthesis is a two-step process in fungal pathogens. Trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate (T6P). Subsequently, trehalose-6-phosphate phosphatase (Tps2) converts T6P to trehalose. The trehalose biosynthesis pathway has been identified as a top candidate for novel antifungal development based on quality, occurrence, specificity, and assay development. However, there are currently no known antifungal agents that target this pathway. As initial steps to develop Tps1 from Cryptococcus neoformans (CnTps1) as a drug target, we report the structures of full-length apo CnTps1 and CnTps1 in complex with uridine diphosphate (UDP) and glucose-6-phosphate (G6P). Both CnTps1 structures are tetramers and display D2 (222) molecular symmetry. Comparison of these two structures reveals significant movement towards the catalytic pocket by the N-terminus upon ligand binding and identifies key residues required for substrate-binding, which are conserved amongst other Tps1 enzymes, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), encompassing residues M209 to I300, which is conserved amongst Cryptococcal species and closely related Basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in the density maps. Although, activity assays revealed that the highly conserved IDD is not required for catalysis in vitro, we hypothesize that the IDD is required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Characterization of the substrate specificity of CnTps1 revealed that UDP-galactose, an epimer of UDP-glucose, is a very poor substrate and inhibitor of the enzyme and highlights the exquisite substrate specificity of Tps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.

2.
J Biol Chem ; 299(3): 102946, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707054

RESUMO

Voltage-gated sodium and calcium channels are distinct, evolutionarily related ion channels that achieve remarkable ion selectivity despite sharing an overall similar structure. Classical studies have shown that ion selectivity is determined by specific binding of ions to the channel pore, enabled by signature amino acid sequences within the selectivity filter (SF). By studying ancestral channels in the pond snail (Lymnaea stagnalis), Guan et al. showed in a recent JBC article that this well-established mechanism can be tuned by alternative splicing, allowing a single CaV3 gene to encode both a Ca2+-permeable and an Na+-permeable channel depending on the cellular context. These findings shed light on mechanisms that tune ion selectivity in physiology and on the evolutionary basis of ion selectivity.


Assuntos
Processamento Alternativo , Canais de Cálcio , Canais de Sódio Disparados por Voltagem , Animais , Sequência de Aminoácidos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Íons/metabolismo , Caramujos/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(37): e2123092119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067314

RESUMO

Levels of the cellular dNTPs, the direct precursors for DNA synthesis, are important for DNA replication fidelity, cell cycle control, and resistance against viruses. Escherichia coli encodes a dGTPase (2'-deoxyguanosine-5'-triphosphate [dGTP] triphosphohydrolase [dGTPase]; dgt gene, Dgt) that establishes the normal dGTP level required for accurate DNA replication but also plays a role in protecting E. coli against bacteriophage T7 infection by limiting the dGTP required for viral DNA replication. T7 counteracts Dgt using an inhibitor, the gene 1.2 product (Gp1.2). This interaction is a useful model system for studying the ongoing evolutionary virus/host "arms race." We determined the structure of Gp1.2 by NMR spectroscopy and solved high-resolution cryo-electron microscopy structures of the Dgt-Gp1.2 complex also including either dGTP substrate or GTP coinhibitor bound in the active site. These structures reveal the mechanism by which Gp1.2 inhibits Dgt and indicate that Gp1.2 preferentially binds the GTP-bound form of Dgt. Biochemical assays reveal that the two inhibitors use different modes of inhibition and bind to Dgt in combination to yield enhanced inhibition. We thus propose an in vivo inhibition model wherein the Dgt-Gp1.2 complex equilibrates with GTP to fully inactivate Dgt, limiting dGTP hydrolysis and preserving the dGTP pool for viral DNA replication.


Assuntos
Bacteriófago T7 , Proteínas de Escherichia coli , Escherichia coli , GTP Fosfo-Hidrolases , Guanosina Trifosfato , Proteínas Virais , Bacteriófago T7/fisiologia , Microscopia Crioeletrônica , Replicação do DNA , DNA Viral/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , Proteínas de Escherichia coli/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Conformação Proteica , Proteínas Virais/química , Replicação Viral
4.
J Biol Chem ; 298(7): 102073, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643313

RESUMO

Deoxynucleoside triphosphate (dNTP) triphosphohydrolases (dNTPases) are important enzymes that may perform multiple functions in the cell, including regulating the dNTP pools and contributing to innate immunity against viruses. Among the homologs that are best studied are human sterile alpha motif and HD domain-containing protein 1 (SAMHD1), a tetrameric dNTPase, and the hexameric Escherichia coli dGTPase; however, it is unclear whether these are representative of all dNTPases given their wide distribution throughout life. Here, we investigated a hexameric homolog from the marine bacterium Leeuwenhoekiella blandensis, revealing that it is a dGTPase that is subject to allosteric activation by dATP, specifically. Allosteric regulation mediated solely by dATP represents a novel regulatory feature among dNTPases that may facilitate maintenance of cellular dNTP pools in L. blandensis. We present high-resolution X-ray crystallographic structures (1.80-2.26 Å) in catalytically important conformations as well as cryo-EM structures (2.1-2.7 Å) of the enzyme bound to dGTP and dATP ligands. The structures, the highest resolution cryo-EM structures of any SAMHD1-like dNTPase to date, reveal an intact metal-binding site with the dGTP substrate coordinated to three metal ions. These structural and biochemical data yield insights into the catalytic mechanism and support a conserved catalytic mechanism for the tetrameric and hexameric dNTPase homologs. We conclude that the allosteric activation by dATP appears to rely on structural connectivity between the allosteric and active sites, as opposed to the changes in oligomeric state upon ligand binding used by SAMHD1.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Regulação Alostérica/fisiologia , Escherichia coli/metabolismo , Flavobacteriaceae , Humanos , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo
5.
Cell ; 184(11): 2955-2972.e25, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34019795

RESUMO

Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.


Assuntos
Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Polissacarídeos/imunologia , SARS-CoV-2/imunologia , Vírus da Imunodeficiência Símia/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/imunologia , Dimerização , Epitopos/imunologia , Glicosilação , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Macaca mulatta , Polissacarídeos/química , Receptores de Antígenos de Linfócitos B/química , Vírus da Imunodeficiência Símia/genética , Vacinas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
6.
Nat Commun ; 12(1): 636, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504779

RESUMO

Nsp15, a uridine specific endoribonuclease conserved across coronaviruses, processes viral RNA to evade detection by host defense systems. Crystal structures of Nsp15 from different coronaviruses have shown a common hexameric assembly, yet how the enzyme recognizes and processes RNA remains poorly understood. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15, in both apo and UTP-bound states. The cryo-EM reconstructions, combined with biochemistry, mass spectrometry, and molecular dynamics, expose molecular details of how critical active site residues recognize uridine and facilitate catalysis of the phosphodiester bond. Mass spectrometry revealed the accumulation of cyclic phosphate cleavage products, while analysis of the apo and UTP-bound datasets revealed conformational dynamics not observed by crystal structures that are likely important to facilitate substrate recognition and regulate nuclease activity. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.


Assuntos
Endorribonucleases/química , Endorribonucleases/ultraestrutura , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/ultraestrutura , Sequência de Aminoácidos , Domínio Catalítico , Microscopia Crioeletrônica , Endorribonucleases/metabolismo , Modelos Químicos , Modelos Moleculares , SARS-CoV-2/química , Uridina Trifosfato/metabolismo , Proteínas não Estruturais Virais/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(36): 22157-22166, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32855298

RESUMO

Subpopulations of ribosomes are responsible for fine tuning the control of protein synthesis in dynamic environments. K63 ubiquitination of ribosomes has emerged as a new posttranslational modification that regulates protein synthesis during cellular response to oxidative stress. K63 ubiquitin, a type of ubiquitin chain that functions independently of the proteasome, modifies several sites at the surface of the ribosome, however, we lack a molecular understanding on how this modification affects ribosome structure and function. Using cryoelectron microscopy (cryo-EM), we resolved the first three-dimensional (3D) structures of K63 ubiquitinated ribosomes from oxidatively stressed yeast cells at 3.5-3.2 Å resolution. We found that K63 ubiquitinated ribosomes are also present in a polysome arrangement, similar to that observed in yeast polysomes, which we determined using cryoelectron tomography (cryo-ET). We further showed that K63 ubiquitinated ribosomes are captured uniquely at the rotated pretranslocation stage of translation elongation. In contrast, cryo-EM structures of ribosomes from mutant cells lacking K63 ubiquitin resolved at 4.4-2.7 Å showed 80S ribosomes represented in multiple states of translation, suggesting that K63 ubiquitin regulates protein synthesis at a selective stage of elongation. Among the observed structural changes, ubiquitin mediates the destabilization of proteins in the 60S P-stalk and in the 40S beak, two binding regions of the eukaryotic elongation factor eEF2. These changes would impact eEF2 function, thus, inhibiting translocation. Our findings help uncover the molecular effects of K63 ubiquitination on ribosomes, providing a model of translation control during oxidative stress, which supports elongation halt at pretranslocation.


Assuntos
Estresse Oxidativo , Ribossomos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Mutação
8.
bioRxiv ; 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803198

RESUMO

New therapeutics are urgently needed to inhibit SARS-CoV-2, the virus responsible for the on-going Covid-19 pandemic. Nsp15, a uridine-specific endoribonuclease found in all coronaviruses, processes viral RNA to evade detection by RNA-activated host defense systems, making it a promising drug target. Previous work with SARS-CoV-1 established that Nsp15 is active as a hexamer, yet how Nsp15 recognizes and processes viral RNA remains unknown. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15. The UTP-bound cryo-EM reconstruction at 3.36 Å resolution provides molecular details into how critical residues within the Nsp15 active site recognize uridine and facilitate catalysis of the phosphodiester bond, whereas the apo-states reveal active site conformational heterogeneity. We further demonstrate the specificity and mechanism of nuclease activity by analyzing Nsp15 products using mass spectrometry. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.

9.
Nat Struct Mol Biol ; 27(10): 925-933, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32699321

RESUMO

The coronavirus (CoV) spike (S) protein, involved in viral-host cell fusion, is the primary immunogenic target for virus neutralization and the current focus of many vaccine design efforts. The highly flexible S-protein, with its mobile domains, presents a moving target to the immune system. Here, to better understand S-protein mobility, we implemented a structure-based vector analysis of available ß-CoV S-protein structures. Despite an overall similarity in domain organization, we found that S-proteins from different ß-CoVs display distinct configurations. Based on this analysis, we developed two soluble ectodomain constructs for the SARS-CoV-2 S-protein, in which the highly immunogenic and mobile receptor binding domain (RBD) is either locked in the all-RBDs 'down' position or adopts 'up' state conformations more readily than the wild-type S-protein. These results demonstrate that the conformation of the S-protein can be controlled via rational design and can provide a framework for the development of engineered CoV S-proteins for vaccine applications.


Assuntos
Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Microscopia Eletrônica/métodos , Modelos Moleculares , Mutação , Conformação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Glicoproteína da Espícula de Coronavírus/genética
10.
Nat Struct Mol Biol ; 27(2): 202-209, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32042153

RESUMO

The mitochondrial membrane-bound AAA protein Bcs1 translocate substrates across the mitochondrial inner membrane without previous unfolding. One substrate of Bcs1 is the iron-sulfur protein (ISP), a subunit of the respiratory Complex III. How Bcs1 translocates ISP across the membrane is unknown. Here we report structures of mouse Bcs1 in two different conformations, representing three nucleotide states. The apo and ADP-bound structures reveal a homo-heptamer and show a large putative substrate-binding cavity accessible to the matrix space. ATP binding drives a contraction of the cavity by concerted motion of the ATPase domains, which could push substrate across the membrane. Our findings shed light on the potential mechanism of translocating folded proteins across a membrane, offer insights into the assembly process of Complex III and allow mapping of human disease-associated mutations onto the Bcs1 structure.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Chaperonas Moleculares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cristalografia por Raios X , Camundongos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Transporte Proteico
11.
Nat Commun ; 11(1): 520, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980614

RESUMO

The trimeric HIV-1 Envelope protein (Env) mediates viral-host cell fusion via a network of conformational transitions, with allosteric elements in each protomer orchestrating host receptor-induced exposure of the co-receptor binding site and fusion elements. To understand the molecular details of this allostery, here, we introduce Env mutations aimed to prevent CD4-induced rearrangements in the HIV-1 BG505 Env trimer. Binding analysis and single-molecule Förster Resonance Energy Transfer confirm that these mutations prevent CD4-induced transitions of the HIV-1 Env. Structural analysis by single-particle cryo-electron microscopy performed on the BG505 SOSIP mutant Env proteins shows rearrangements in the gp120 topological layer contacts with gp41. Displacement of a conserved tryptophan (W571) from its typical pocket in these Env mutants renders the Env insensitive to CD4 binding. These results reveal the critical function of W571 as a conformational switch in Env allostery and receptor-mediated viral entry and provide insights on Env conformation that are relevant for vaccine design.


Assuntos
Antígenos CD4/metabolismo , HIV-1/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Solubilidade , Temperatura , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/ultraestrutura
12.
Neuron ; 105(5): 882-894.e5, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31866091

RESUMO

Transient receptor potential channel subfamily A member 1 (TRPA1) is a Ca2+-permeable cation channel that serves as one of the primary sensors of environmental irritants and noxious substances. Many TRPA1 agonists are electrophiles that are recognized by TRPA1 via covalent bond modifications of specific cysteine residues located in the cytoplasmic domains. However, a mechanistic understanding of electrophile sensing by TRPA1 has been limited due to a lack of high-resolution structural information. Here, we present the cryoelectron microscopy (cryo-EM) structures of nanodisc-reconstituted ligand-free TRPA1 and TRPA1 in complex with the covalent agonists JT010 and BITC at 2.8, 2.9, and 3.1 Å, respectively. Our structural and functional studies provide the molecular basis for electrophile recognition by the extraordinarily reactive C621 in TRPA1 and mechanistic insights into electrophile-dependent conformational changes in TRPA1. This work also provides a platform for future drug development targeting TRPA1.


Assuntos
Acetamidas/metabolismo , Irritantes/metabolismo , Isotiocianatos/metabolismo , Canal de Cátion TRPA1/ultraestrutura , Tiazóis/metabolismo , Acetamidas/farmacologia , Microscopia Crioeletrônica , Cisteína/metabolismo , Células HEK293 , Humanos , Irritantes/farmacologia , Isotiocianatos/farmacologia , Modelos Moleculares , Nociceptores , Dor/metabolismo , Técnicas de Patch-Clamp , Fosfolipídeos/metabolismo , Domínios Proteicos , Estrutura Terciária de Proteína , Prurido/metabolismo , Canal de Cátion TRPA1/efeitos dos fármacos , Canal de Cátion TRPA1/metabolismo , Tiazóis/farmacologia
14.
Nat Struct Mol Biol ; 26(9): 830-839, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31488907

RESUMO

Ribosome assembly is a complex process reliant on the coordination of trans-acting enzymes to produce functional ribosomal subunits and secure the translational capacity of cells. The endoribonuclease (RNase) Las1 and the polynucleotide kinase (PNK) Grc3 assemble into a multienzyme complex, herein designated RNase PNK, to orchestrate processing of precursor ribosomal RNA (rRNA). RNase PNK belongs to the functionally diverse HEPN nuclease superfamily, whose members rely on distinct cues for nuclease activation. To establish how RNase PNK coordinates its dual enzymatic activities, we solved a series of cryo-EM structures of Chaetomium thermophilum RNase PNK in multiple conformational states. The structures reveal that RNase PNK adopts a butterfly-like architecture, harboring a composite HEPN nuclease active site flanked by discrete RNA kinase sites. We identify two molecular switches that coordinate nuclease and kinase function. Together, our structures and corresponding functional studies establish a new mechanism of HEPN nuclease activation essential for ribosome production.


Assuntos
Domínio Catalítico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Precursores de RNA/metabolismo , Chaetomium/enzimologia , Microscopia Crioeletrônica , Conformação Proteica
15.
Nat Commun ; 10(1): 3740, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431622

RESUMO

The transient receptor potential melastatin 2 (TRPM2) channel plays a key role in redox sensation in many cell types. Channel activation requires binding of both ADP-ribose (ADPR) and Ca2+. The recently published TRPM2 structures from Danio rerio in the ligand-free and the ADPR/Ca2+-bound conditions represent the channel in closed and open states, which uncovered substantial tertiary and quaternary conformational rearrangements. However, it is unclear how these rearrangements are achieved within the tetrameric channel during channel gating. Here we report the cryo-electron microscopy structures of Danio rerio TRPM2 in the absence of ligands, in complex with Ca2+ alone, and with both ADPR and Ca2+, resolved to ~4.3 Å, ~3.8 Å, and ~4.2 Å, respectively. In contrast to the published results, our studies capture ligand-bound TRPM2 structures in two-fold symmetric intermediate states, offering a glimpse of the structural transitions that bridge the closed and open conformations.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Cálcio/metabolismo , Estrutura Quaternária de Proteína , Canais de Cátion TRPM/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Microscopia Crioeletrônica , Células HEK293 , Humanos , Ativação do Canal Iônico , Técnicas de Patch-Clamp , Células Sf9 , Spodoptera , Canais de Cátion TRPM/química , Peixe-Zebra , Proteínas de Peixe-Zebra/química
16.
Elife ; 82019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31090543

RESUMO

The Transient Receptor Potential Vanilloid 2 (TRPV2) channel is a member of the temperature-sensing thermoTRPV family. Recent advances in cryo-electronmicroscopy (cryo-EM) and X-ray crystallography have provided many important insights into the gating mechanisms of thermoTRPV channels. Interestingly, crystallographic studies of ligand-dependent TRPV2 gating have shown that the TRPV2 channel adopts two-fold symmetric arrangements during the gating cycle. However, it was unclear if crystal packing forces played a role in stabilizing the two-fold symmetric arrangement of the channel. Here, we employ cryo-EM to elucidate the structure of full-length rabbit TRPV2 in complex with the agonist resiniferatoxin (RTx) in nanodiscs and amphipol. We show that RTx induces two-fold symmetric conformations of TRPV2 in both environments. However, the two-fold symmetry is more pronounced in the native-like lipid environment of the nanodiscs. Our data offers insights into a gating pathway in TRPV2 involving symmetry transitions.


Assuntos
Membranas/enzimologia , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/ultraestrutura , Animais , Microscopia Crioeletrônica , Diterpenos/metabolismo , Ligação Proteica , Conformação Proteica , Coelhos
17.
Elife ; 82019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31070581

RESUMO

Temperature-sensitive transient receptor potential vanilloid (thermoTRPV) channels are activated by ligands and heat, and are involved in various physiological processes. ThermoTRPV channels possess a large cytoplasmic ring consisting of N-terminal ankyrin repeat domains (ARD) and C-terminal domains (CTD). The cytoplasmic inter-protomer interface is unique and consists of a CTD coiled around a ß-sheet which makes contacts with the neighboring ARD. Despite much existing evidence that the cytoplasmic ring is important for thermoTRPV function, the mechanism by which this unique structure is involved in thermoTRPV gating has not been clear. Here, we present cryo-EM and electrophysiological studies which demonstrate that TRPV3 gating involves large rearrangements at the cytoplasmic inter-protomer interface and that this motion triggers coupling between cytoplasmic and transmembrane domains, priming the channel for opening. Furthermore, our studies unveil the role of this interface in the distinct biophysical and physiological properties of individual thermoTRPV subtypes.


Assuntos
Citoplasma/metabolismo , Ativação do Canal Iônico , Canais de Cátion TRPV/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Canais de Cátion TRPV/química , Temperatura
18.
Science ; 363(6430)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30733385

RESUMO

Transient receptor potential melastatin member 8 (TRPM8) is a calcium ion (Ca2+)-permeable cation channel that serves as the primary cold and menthol sensor in humans. Activation of TRPM8 by cooling compounds relies on allosteric actions of agonist and membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2), but lack of structural information has thus far precluded a mechanistic understanding of ligand and lipid sensing by TRPM8. Using cryo-electron microscopy, we determined the structures of TRPM8 in complex with the synthetic cooling compound icilin, PIP2, and Ca2+, as well as in complex with the menthol analog WS-12 and PIP2 Our structures reveal the binding sites for cooling agonists and PIP2 in TRPM8. Notably, PIP2 binds to TRPM8 in two different modes, which illustrate the mechanism of allosteric coupling between PIP2 and agonists. This study provides a platform for understanding the molecular mechanism of TRPM8 activation by cooling agents.


Assuntos
Temperatura Baixa , Lipídeos de Membrana/química , Mentol/química , Fosfatidilinositol 4,5-Difosfato/química , Pirimidinonas/química , Aves Canoras/fisiologia , Canais de Cátion TRPM/química , Animais , Sítios de Ligação , Cálcio/química , Microscopia Crioeletrônica , Mentol/análogos & derivados , Modelos Moleculares , Estrutura Terciária de Proteína
19.
Nat Commun ; 10(1): 513, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705282

RESUMO

Rix7 is an essential type II AAA-ATPase required for the formation of the large ribosomal subunit. Rix7 has been proposed to utilize the power of ATP hydrolysis to drive the removal of assembly factors from pre-60S particles, but the mechanism of release is unknown. Rix7's mammalian homolog, NVL2 has been linked to cancer and mental illness disorders, highlighting the need to understand the molecular mechanisms of this essential machine. Here we report the cryo-EM reconstruction of the tandem AAA domains of Rix7 which form an asymmetric stacked homohexameric ring. We trapped Rix7 with a polypeptide in the central channel, revealing Rix7's role as a molecular unfoldase. The structure establishes that type II AAA-ATPases lacking the aromatic-hydrophobic motif within the first AAA domain can engage a substrate throughout the entire central channel. The structure also reveals that Rix7 contains unique post-α7 insertions within both AAA domains important for Rix7 function.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Microscopia Crioeletrônica/métodos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , RNA Ribossômico/metabolismo , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo
20.
Adv Mater ; 28(12): 2322-9, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26813882

RESUMO

Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA