Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
PLoS One ; 19(3): e0299354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483966

RESUMO

The goal of this study is to investigate the origin, prevalence, and evolution of the pESI megaplasmid in Salmonella isolated from animals, foods, and humans. We queried 510,097 Salmonella genomes under the National Center for Biotechnology Information (NCBI) Pathogen Detection (PD) database for the presence of potential sequences containing the pESI plasmid in animal, food, and environmental sources. The presence of the pESI megaplasmid was confirmed by using seven plasmid-specific markers (rdA, pilL, SogS, TrbA, ipf, ipr2 and IncFIB(pN55391)). The plasmid and chromosome phylogeny of these isolates was inferred from single nucleotide polymorphisms (SNPs). Our search resolved six Salmonella clusters carrying the pESI plasmid. Four were emergent Salmonella Infantis clusters, and one each belonged to serovar Senftenberg and Alachua. The Infantis cluster with a pESI plasmid carrying blaCTX-M-65 gene was the biggest of the four emergent Infantis clusters, with over 10,000 isolates. This cluster was first detected in South America and has since spread widely in United States. Over time the composition of pESI in United States has changed with the average number of resistance genes showing a decrease from 9 in 2014 to 5 in 2022, resulting from changes in gene content in two integrons present in the plasmid. A recent and emerging cluster of Senftenberg, which carries the blaCTX-M-65 gene and is primarily associated with turkey sources, was the second largest in the United States. SNP analysis showed that this cluster likely originated in North Carolina with the recent acquisition of the pESI plasmid. A single Alachua isolate from turkey was also found to carry the pESI plasmid containing blaCTX-M-65 gene. The study of the pESI plasmid, its evolution and mechanism of spread can help us in developing appropriate strategies for the prevention and further spread of this multi-drug resistant plasmid in Salmonella in poultry and humans.


Assuntos
Salmonella enterica , Humanos , Animais , Estados Unidos , Sorogrupo , Antibacterianos/farmacologia , Resistência às Cefalosporinas/genética , Galinhas/genética , Virulência/genética , Salmonella , Plasmídeos/genética , Farmacorresistência Bacteriana Múltipla/genética
2.
ACS Appl Mater Interfaces ; 16(9): 11489-11496, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393972

RESUMO

The freedom from efficiency droop motivates monochromatic lasers to progress in general lighting applications due to the demand for more efficient and sustainable light sources. Still, a white light based on monochromatic lasers with high lighting quality, such as a high color rendering ability, an angle-independent output, and a speckle-free illumination, has not yet been fabricated nor demonstrated. Random lasers, with the special mechanism caused by multiple scattering, the angle-free emission, and the uncomplicated fabrication processes, inspire us to investigate the feasibility of utilizing them in general lighting. In this work, a white random laser with a high color rendering index (CRI) value, regardless of pumping energy and observing direction, was performed and discussed. We also investigated the stability of white RL as its CIE chromaticity coordinates exhibit negligible differences with increasing pump energy density, retaining its high-CRI measurement. Also, it exhibits angle-independent emission while having a high color rendering ability. After passing through a scattering film, it generated no speckles compared to the conventional laser. We demonstrated the advances in white laser illumination, showing that a white random laser is promising to be applied for high-brightness illumination, biological-friendly lighting, accurate color selections, and medical sensing.

3.
Microbiol Spectr ; 12(1): e0348523, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37991374

RESUMO

IMPORTANCE: Macrolides of different ring sizes are critically important antimicrobials for human medicine and veterinary medicine, though the widely used 15-membered ring azithromycin in humans is not approved for use in veterinary medicine. We document here the emergence of azithromycin-resistant Salmonella among the NARMS culture collections between 2011 and 2021 in food animals and retail meats, some with co-resistance to ceftriaxone or decreased susceptibility to ciprofloxacin. We also provide insights into the underlying genetic mechanisms and genomic contexts, including the first report of a novel combination of azithromycin resistance determinants and the characterization of multidrug-resistant plasmids. Further, we highlight the emergence of a multidrug-resistant Salmonella Newport clone in food animals (mainly cattle) with both azithromycin resistance and decreased susceptibility to ciprofloxacin. These findings contribute to a better understating of azithromycin resistance mechanisms in Salmonella and warrant further investigations on the drivers behind the emergence of resistant clones.


Assuntos
Azitromicina , Farmacorresistência Bacteriana Múltipla , Humanos , Estados Unidos , Animais , Bovinos , Azitromicina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Salmonella/genética , Antibacterianos/farmacologia , Carne , Ciprofloxacina/farmacologia , Genômica , Testes de Sensibilidade Microbiana
4.
Front Immunol ; 14: 1277745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146374

RESUMO

Introduction: Pulmonary granuloma diseases caused by Mycobacterium abscessus (M. abscessus) have increased in past decades, and drug-resistance in this pathogen is a growing public health concern. Therefore, an animal model of chronic granuloma disease is urgently needed. Methods: In this study, M. abscessus embedded within agar beads (agar-AB) was used to develop such a model in C57BL/6JNarl mice. Results: Chronic infection was sustained for at least 3 months after agar-AB infection, visible granulomas spread in the lungs, and giant cells and foamy cells appeared in the granulomas. More importantly, pulmonary fibrosis progressed for 3 months, and collagen fibers were detected by Masson trichrome staining. Further, inducible nitric oxide synthase (iNOS) was highly expressed within the alveolar space, and the fibrosis-mediator transforming growth factor beta (TGF-ß) began to be expressed at 1 month. Hypoxia-inducible factor (HIF-1α) expression also increased, which aided in normalizing oxygen partial pressure. Discussion: Although the transient fibrosis persisted for only 3 months, and the pulmonary structure resolved when the pathogen was cleard, this pulmonary fibrosis model for M. abscessus infection will provide a novel test platform for development of new drugs, regimens, and therapies.


Assuntos
Mycobacterium abscessus , Fibrose Pulmonar , Animais , Camundongos , Mycobacterium abscessus/metabolismo , Ágar/metabolismo , Camundongos Endogâmicos C57BL , Fibrose , Granuloma/patologia
5.
J Food Prot ; 86(8): 100113, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290750

RESUMO

Antimicrobials and heavy metals are commonly used in the animal feed industry. The role of in-feed antimicrobials on the evolution and persistence of resistance in enteric bacteria is not well described. Whole-Genome Sequencing (WGS) is widely used for genetic characterizations of bacterial isolates, including antimicrobial resistance, heavy metal tolerance, virulence factors, and relatedness to other sequenced isolates. The goals of this study were to i) use WGS to characterize Salmonella enterica (n = 33) and Escherichia coli (n = 30) isolated from swine feed and feed mill environments; and ii) investigate their genotypic and phenotypic antimicrobial and heavy metal tolerance. Salmonella isolates belonged to 10 serovars, the most common being Cubana, Senftenberg, and Tennessee. E. coli isolates were grouped into 22 O groups. Phenotypic resistance to at least one antimicrobial was observed in 19 Salmonella (57.6%) and 17 E. coli (56.7%) isolates, whereas multidrug resistance (resistant to ≥3 antimicrobial classes) was observed in four Salmonella (12%) and two E. coli (7%) isolates. Antimicrobial resistance genes were identified in 17 Salmonella (51%) and 29 E. coli (97%), with 11 and 29 isolates possessing genes conferring resistance to multiple antimicrobial classes. Phenotypically, 53% Salmonella and 58% E. coli presented resistance to copper and arsenic. All isolates that possessed the copper resistance operon were resistant to the highest concentration tested (40 mM). Heavy metal tolerance genes to copper and silver were present in 26 Salmonella isolates. Our study showed a strong agreement between predicted and measured resistances when comparing genotypic and phenotypic data for antimicrobial resistance, with an overall concordance of 99% and 98.3% for Salmonella and E. coli, respectively.


Assuntos
Anti-Infecciosos , Metais Pesados , Salmonella enterica , Animais , Suínos , Escherichia coli , Cobre , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Salmonella , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana
6.
Sci Rep ; 13(1): 1331, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693882

RESUMO

Multidrug-resistant (MDR) Salmonella has been a long-standing challenge in public health and food safety. The prevalence of MDR S. Enteritidis, especially isolated from humans, in China is significantly higher than those from the U.S. and other countries. A dataset of 197 S. Enteritidis genomes, including 16 sequenced clinical isolates from China and 181 downloaded genomes of human isolates from the U.S., Europe, and Africa, was analyzed for genomic diversity, virulence potential, and antimicrobial resistance (AMR). Phylogenomic analyses identified four major well-supported clades (I-IV). While AMR genotype in the majority of isolates in clades I and IV displayed as pan-susceptible, 81.8% (9/11) and 22.4% (13/58) of isolates in clades III and II were MDR, respectively. It is noted that 77% (10/13) of MDR isolates in clade II were from China. The most common antimicrobial resistance genes (ARGs) carried by the Chinese isolates were aph(3')-IIa, blaCTX-M-55, and blaTEM-1B, whereas blaTEM-1B, sul1, sul2, drfA7, aph(3")-Ib/strA, and aph(6)-Id/strB were most often identified in those from Africa (clade III). Among the 14 plasmid types identified, IncX1 and IncFII(pHN7A8) were found exclusively in the Chinese MDR isolates, while IncQ1 was highly associated with the African MDR isolates. The spvRABCD virulence operon was present in 94.9% (187/197) of isolates tested and was highly associated with both the IncF (IncFII and IncFIB) plasmids. In addition, phylogenetic differences in distribution of Salmonella pathogenicity islands (SPIs), prophages and other accessory genes were also noted. Taken together, these findings provide new insights into the molecular mechanisms underpinning diversification of MDR S. Enteritidis.


Assuntos
Salmonella enterica , Salmonella enteritidis , Humanos , Antibacterianos/farmacologia , Filogenia , Farmacorresistência Bacteriana/genética , Genômica , Geografia , Farmacorresistência Bacteriana Múltipla/genética , Salmonella enterica/genética , Testes de Sensibilidade Microbiana
7.
Small ; 19(2): e2203881, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36404110

RESUMO

Carbon@titania yolk-shell nanostructures are successfully synthesized at different calcination conditions. These unique structure nanomaterials can be used as a photocatalyst to degrade the emerging water pollutant, acetaminophen (paracetamol). The photodegradation analysis studies have shown that the samples with residual carbon nanospheres have improved the photocatalytic efficiency. The local electronic and atomic structure of the nanostructures are analyzed by X-ray absorption spectroscopy (XAS) measurements. The spectra confirm that the hollow shell has an anatase phase structure, slight lattice distortion, and variation in Ti 3d orbital orientation. In situ XAS measurements reveal that the existence of amorphous carbon nanospheres inside the nano spherical shell inhibit the recombination of electron-hole pairs; more mobile holes are formed in the p-d hybridized bands near the Fermi surface and enables the acceleration of the carries that significantly enhance the photodegradation of paracetamol under UV-visible irradiation. The observed charge transfer process from TiO2  hybridized orbital to the carbon nanospheres reduces the recombination rate of electrons and holes, thus increasing the photocatalytic efficiency.


Assuntos
Carbono , Nanoestruturas , Fotólise , Carbono/química , Acetaminofen , Espectroscopia por Absorção de Raios X , Catálise , Nanoestruturas/química
8.
Foodborne Pathog Dis ; 19(8): 509-521, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35960531

RESUMO

Salmonella serovar Kentucky is frequently isolated from chickens and dairy cattle, but recovery from humans is comparatively low based on the U.S. National Antimicrobial Resistance Monitoring System (NARMS) reports. We aimed to better describe the genetic diversity, antimicrobial resistance, and virulence determinants of Salmonella Kentucky isolates from humans, food animal ceca, retail meat and poultry products, imported foods and food products, and other samples. We analyzed the genomes of 774 Salmonella Kentucky isolates and found that 63% (54/86) of human isolates were sequence type (ST)198, 33% (29/86) were ST152, and 3.5% (3/86) were ST314. Ninety-one percent (570/629) of cecal isolates and retail meat and poultry isolates were ST152 or ST152-like (one allele difference), and 9.2% (58/629) were ST198. Isolates from imported food were mostly ST198 (60%, 22/37) and ST314 (29.7%, 11/37). ST198 isolates clustered into two main lineages. Clade ST198.2 comprised almost entirely isolates from humans and imported foods, all containing triple mutations in the quinolone resistance-determining region (QRDR) that confer resistance to fluoroquinolones. Clade ST198.1 contained isolates from humans, ceca, retail meat and poultry products, and imported foods that largely lacked QRDR mutations. ST152 isolates from cattle had a lineage (Clade 2) distinct from ST152 isolates from chicken (Clade 4), and half of ST152 human isolates clustered within two other clades (Clades 1 and 3), largely distinct from Clades 2 and 4. Although clinical illness associated with Salmonella Kentucky is low, ST198 appears to account for most human infections in the Unites States but is uncommon among ceca of domestic food animals and retail meat and poultry products. These findings, combined with human exposure data, suggest that fluoroquinolone-resistant ST198 infections may be linked to the consumption of food products that are imported or consumed while traveling. We also found unique differences in the composition of virulence genes and antimicrobial resistance genes among the clades, which may provide clues to the host specificity and pathogenicity of Salmonella Kentucky lineages.


Assuntos
Antibacterianos , Salmonella enterica , Animais , Antibacterianos/farmacologia , Bovinos , Galinhas , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Genômica , Humanos , Kentucky , Testes de Sensibilidade Microbiana , Salmonella/genética , Sorogrupo , Estados Unidos , Virulência/genética
9.
J Phys Chem A ; 126(12): 2018-2030, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35297626

RESUMO

In this paper, we introduced an order parameter, named the local structure similarity (LSS), to measure the resemblance of a cluster structure in a liquid with respect to a perfect crystal. The LSS is based on a dot product of two bond orientational order complex vectors, with one vector associated with a particle in a liquid and the other vector with a particle in a crystal. The calculation of the LSS should scan the entire space of the Euler angles determined by the two coordinate frames describing individually the liquid and the crystal. The effectiveness of the LSS was examined by solid-like clusters in a Lennard-Jones (LJ) system near its liquid-solid phase transition and at solid states below its melting point, where the thermodynamic states of the LJ system were obtained by simulation annealing. The LSS measure was utilized to scrutinize the fcc-like, hcp-like, and bcc-like clusters classified by criteria based on W4 and W6 order parameters. As indicated by our results, the two ways of classification are consistent for fcc-like and hcp-like clusters, which are in a close resemblance to their crystalline counterparts. However, the classification with positive W6 for bcc-like clusters is inconsistent with the results of the LSS measure, which was confirmed by clusters in a LJ system confined between two parallel slabs of particles in the bcc structure arrangement.

10.
Front Microbiol ; 12: 777817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867920

RESUMO

Salmonella enterica is a significant and phylogenetically diverse zoonotic pathogen. To understand its genomic heterogeneity and antimicrobial resistance, we performed long-read sequencing on Salmonella isolated from retail meats and food animals. A collection of 134 multidrug-resistant isolates belonging to 33 serotypes were subjected to PacBio sequencing. One major locus of diversity among these isolates was the presence and orientation of Salmonella pathogenic islands (SPI), which varied across different serotypes but were largely conserved within individual serotypes. We also identified insertion of an IncQ resistance plasmid into the chromosome of fourteen strains of serotype I 4,[5],12:i:- and the Salmonella genomic island 1 (SGI-1) in five serotypes. The presence of various SPIs, SGI-1 and integrated plasmids contributed significantly to the genomic variability and resulted in chromosomal resistance in 55.2% (74/134) of the study isolates. A total of 93.3% (125/134) of isolates carried at least one plasmid, with isolates carrying up to seven plasmids. We closed 233 plasmid sequences of thirteen replicon types, along with twelve hybrid plasmids. Some associations between Salmonella isolate source, serotype, and plasmid type were seen. For instance, IncX plasmids were more common in serotype Kentucky from retail chicken. Plasmids IncC and IncHI had on average more than five antimicrobial resistance genes, whereas in IncX, it was less than one per plasmid. Overall, 60% of multidrug resistance (MDR) strains that carried >3 AMR genes also carried >3 heavy metal resistance genes, raising the possibility of co-selection of antimicrobial resistance in the presence of heavy metals. We also found nine isolates representing four serotypes that carried virulence plasmids with the spv operon. Together, these data demonstrate the power of long-read sequencing to reveal genomic arrangements and integrated plasmids with a high level of resolution for tracking and comparing resistant strains from different sources. Additionally, the findings from this study will help expand the reference set of closed Salmonella genomes that can be used to improve genome assembly from short-read data commonly used in One Health antimicrobial resistance surveillance.

11.
Front Pharmacol ; 12: 746496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899300

RESUMO

Tuberculosis (TB) is a leading cause of death from a single infectious agent, Mycobacterium tuberculosis (Mtb). Although progress has been made in TB control, still about 10 million people worldwide develop TB annually and 1.5 million die of the disease. The rapid emergence of aggressive, drug-resistant strains and latent infections have caused TB to remain a global health challenge. TB treatments are lengthy and their side effects lead to poor patient compliance, which in turn has contributed to the drug resistance and exacerbated the TB epidemic. The relatively low output of newly approved antibiotics has spurred research interest toward alternative antibacterial molecules such as silver nanoparticles (AgNPs). In the present study, we use the natural biopolymer alginate to serve as a stabilizer and/or reductant to green synthesize AgNPs, which improves their biocompatibility and avoids the use of toxic chemicals. The average size of the alginate-capped AgNPs (ALG-AgNPs) was characterized as nanoscale, and the particles were round in shape. Drug susceptibility tests showed that these ALG-AgNPs are effective against both drug-resistant Mtb strains and dormant Mtb. A bacterial cell-wall permeability assay showed that the anti-mycobacterial action of ALG-AgNPs is mediated through an increase in cell-wall permeability. Notably, the anti-mycobacterial potential of ALG-AgNPs was effective in both zebrafish and mouse TB animal models in vivo. These results suggest that ALG-AgNPs could provide a new therapeutic option to overcome the difficulties of current TB treatments.

12.
J Am Chem Soc ; 143(33): 12935-12942, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387467

RESUMO

We report the preparation of hexagonal mesoporous silica from single-source giant surfactants constructed via dihydroxyl-functionlized polyhedral oligomeric silsesquioxane (DPOSS) heads and a polystyrene (PS) tail. After thermal annealing, the obtained well-ordered hexagonal hybrid was pyrolyzed to afford well-ordered mesoporous silica. A high porosity (e.g., 581 m2/g) and a uniform and narrow pore size distribution (e.g., 3.3 nm) were achieved. Mesoporous silica in diverse shapes and morphologies were achieved by processing the precursor. When the PS tail length was increased, the pore size expanded accordingly. Moreover, such pyrolyzed, ordered mesoporous silica can help to increase both efficiency and stability of nanocatalysts.

13.
J Inflamm Res ; 14: 3781-3795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408462

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus which caused a global respiratory disease pandemic beginning in December 2019. Understanding the pathogenesis of infection and the immune responses in a SARS-CoV-2-infected animal model is urgently needed for vaccine development. METHODS: Syrian hamsters (Mesocricetus auratus) were intranasally inoculated with 105, 5×105, and 106 TCID50 of SARS-CoV-2 per animal and studied for up to 14 days. Body weight, viral load and real-time PCR amplification of the SARS-CoV-2 N gene were measured. On days 3, 6 and 9, lung, blood, liver, pancreas, heart, kidney, and bone marrow were harvested and processed for pathology, viral load, and cytokine expression. RESULTS: Body weight loss, increased viral load, immune cell infiltration, upregulated cytokine expression, viral RNA, SARS-CoV-2 nucleoprotein, and mucus were detected in the lungs, particularly on day 3 post-infection. Extremely high expression of the pro-inflammatory cytokines MIP-1 and RANTES was detected in lung tissue, as was high expression of IL-1ß, IL-6, IL-12, and PD-L1. The glutamic oxalacetic transaminase/glutamic pyruvic transaminase (GOT/GPT) ratio in blood was significantly increased at 6 days post-infection, and plasma amylase and lipase levels were also elevated in infected hamsters. CONCLUSION: Our results provide new information on immunological cytokines and biological parameters related to the pathogenesis and immune response profile in the Syrian hamster model of SARS-CoV-2 infection.

14.
Front Microbiol ; 12: 703890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326828

RESUMO

Campylobacter species are among the leading foodborne bacterial agents of human diarrheal illness. The majority of campylobacteriosis has been attributed to Campylobacter jejuni (85% or more), followed by Campylobacter coli (5-10%). The distribution of C. jejuni and C. coli varies by host organism, indicating that the contribution to human infection may differ between isolation sources. To address the relative contribution of each source to C. coli infections in humans, core genome multilocus sequence type with a 200-allele difference scheme (cgMLST200) was used to determine cgMLST type for 3,432 C. coli isolated from food animals (n = 2,613), retail poultry meats (n = 389), human clinical settings (n = 285), and environmental sources (n = 145). Source attribution was determined by analyzing the core genome with a minimal multilocus distance methodology (MMD). Using MMD, a higher proportion of the clinical C. coli population was attributed to poultry (49.6%) and environmental (20.9%) sources than from cattle (9.8%) and swine (3.2%). Within the population of C. coli clinical isolates, 70% of the isolates that were attributed to non-cecal retail poultry, dairy cattle, beef cattle and environmental waters came from two cgMLST200 groups from each source. The most common antibiotic resistance genes among all C. coli were tetO (65.6%), bla OXA - 193 (54.2%), aph(3')-IIIa (23.5%), and aadE-Cc (20.1%). Of the antibiotic resistance determinants, only one gene was isolated from a single source: bla OXA - 61 was only isolated from retail poultry. Within cgMLST200 groups, 17/17 cgMLST200-435 and 89/92 cgMLST200-707 isolates encoded for aph(3')-VIIa and 16/16 cgMLST200-319 harbored aph(2')-If genes. Distribution of bla OXA alleles showed 49/50 cgMLST200-5 isolates contained bla OXA - 498 while bla OXA - 460 was present in 37/38 cgMLST200-650 isolates. The cgMLST200-514 group revealed both ant(6)-Ia and sat4 resistance genes in 23/23 and 22/23 isolates, respectively. Also, cgMLST200-266 and cgMLST200-84 had GyrAT86I mutation with 16/16 (100%) and 14/15 (93.3%), respectively. These findings illustrate how cgMLST and MMD methods can be used to evaluate the relative contribution of known sources of C. coli to the human burden of campylobacteriosis and how cgMLST typing can be used as an indicator of antimicrobial resistance in C. coli.

16.
Membranes (Basel) ; 12(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35054574

RESUMO

In this study, high-performance indium-gallium-zinc oxide thin-film transistors (IGZO TFTs) with a dual-gate (DG) structure were manufactured using plasma treatment and rapid thermal annealing (RTA). Atomic force microscopy measurements showed that the surface roughness decreased upon increasing the O2 ratio from 16% to 33% in the argon-oxygen plasma treatment mixture. Hall measurement results showed that both the thin-film resistivity and carrier Hall mobility of the Ar-O2 plasma-treated IGZO thin films increased with the reduction of the carrier concentration caused by the decrease in the oxygen vacancy density; this was also verified using X-ray photoelectron spectroscopy measurements. IGZO thin films treated with Ar-O2 plasma were used as channel layers for fabricating DG TFT devices. These DG IGZO TFT devices were subjected to RTA at 100 °C-300 °C for improving the device characteristics; the field-effect mobility, subthreshold swing, and ION/IOFF current ratio of the 33% O2 plasma-treated DG TFT devices improved to 58.8 cm2/V·s, 0.12 V/decade, and 5.46 × 108, respectively. Long-term device stability reliability tests of the DG IGZO TFTs revealed that the threshold voltage was highly stable.

17.
Microb Drug Resist ; 27(6): 792-799, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33232624

RESUMO

Recently, there have been reports worldwide of a multidrug-resistant, emergent Salmonella Infantis (ESI) clone with a large megaplasmid (pESI), often containing the extended-spectrum beta-lactamase gene blaCTX-M-65. This clone also has a gyrA mutation conferring fluoroquinolone resistance, further limiting treatment options. In the United States, this clone has also been found in poultry sources, indicating a likely source of human illnesses. We conducted short-read sequencing of Salmonella enterica isolated from retail meats as part of routine surveillance by the National Antimicrobial Resistance Monitoring System (NARMS). We analyzed the resulting data temporally and geographically to determine when and where the ESI clone has spread in the United States. We found the ESI clone was first found in retail meats in Tennessee in 2014, but by 2019 was throughout the United States and comprised 29% of all Salmonella isolated from retail chickens, and 7% from retail turkey. Of these isolates, 85.0% were within 20 single nucleotide polymorphisms (SNPs) of those causing human illnesses. Long-read sequencing data indicated substantial recombination in the pESI plasmid resulting in the presence of 0-10 resistance genes, despite all their chromosomes being within 31 SNPs of one another. This work demonstrates the rapid spread of this clone of Salmonella Infantis in poultry in the United States, with the potential for increased burden of human illness attributed to this multidrug-resistant pathogen.


Assuntos
Aves Domésticas/microbiologia , Salmonella/genética , Salmonella/isolamento & purificação , Animais , Antibacterianos/farmacologia , Carne , Plasmídeos/genética , Análise Espacial , Estados Unidos/epidemiologia
18.
Genes (Basel) ; 11(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883017

RESUMO

Salmonella is a leading cause of bacterial infections in animals and humans. We sequenced a collection of 450 Salmonella strains from diseased animals to better understand the genetic makeup of their virulence and resistance features. The presence of Salmonella pathogenicity islands (SPIs) varied by serotype. S. Enteritidis carried the most SPIs (n = 15), while S. Mbandaka, S. Cerro, S. Meleagridis, and S. Havana carried the least (n = 10). S. Typhimurium, S. Choleraesuis, S. I 4,5,12:i:-, and S. Enteritidis each contained the spv operon on IncFII or IncFII-IncFIB hybrid plasmids. Two S. IIIa carried a spv operon with spvD deletion on the chromosome. Twelve plasmid types including 24 hybrid plasmids were identified. IncA/C was frequently associated with S. Newport (83%) and S. Agona (100%) from bovine, whereas IncFII (100%), IncFIB (100%), and IncQ1 (94%) were seen in S. Choleraesuis from swine. IncX (100%) was detected in all S. Kentucky from chicken. A total of 60 antimicrobial resistance genes (ARGs), four disinfectant resistances genes (DRGs) and 33 heavy metal resistance genes (HMRGs) were identified. The Salmonella strains from sick animals contained various SPIs, resistance genes and plasmid types based on the serotype and source of the isolates. Such complicated genomic structures shed light on the strain characteristics contributing to the severity of disease and treatment failures in Salmonella infections, including those causing illnesses in animals.


Assuntos
Proteínas de Bactérias/genética , Ilhas Genômicas/genética , Genômica/métodos , Infecções por Bactérias Gram-Negativas/genética , Salmonella enterica/genética , Fatores de Virulência/genética , Virulência/genética , Animais , Proteínas de Bactérias/metabolismo , Bovinos , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Plasmídeos/genética , Salmonella enterica/classificação , Salmonella enterica/isolamento & purificação , Sorogrupo , Suínos , Fatores de Virulência/metabolismo
19.
Front Immunol ; 11: 1298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655570

RESUMO

Pulmonary tuberculosis (TB) is a difficult-to-eliminate disease. Although the Bacille Calmette-Guérin (BCG) vaccine against Mycobacterium tuberculosis (MTB) has been available for decades, its efficacy is variable and has lessened over time. Furthermore, the BCG vaccine no longer protects against newly emerged Beijing strains which are responsible for many current infections in adults. Development of a novel vaccine is urgently needed. In this study, we first tested the efficacy of our recombinant BCG vaccines rBCG1 and rBCG2, compared to parental BCG, against MTB strain H37Ra in mice. Both the bacterial load and the level of lymphocyte infiltration decreased dramatically in the three groups treated with vaccine, especially rBCG1 and rBCG2. Furthermore, the Th1 and Th17 responses increased and macrophage numbers rose in the vaccination groups. Th1-mediated production of cytokines TNF-α, IFN-γ, and MCP-1 as well as M1-polarized cells all increased in lung tissue of the rBCG1 and rBCG2 groups. Clodronate-induced depletion of macrophages reduced the level of protection. Based on these results, we conclude that rBCG vaccines induce a significant increase in the number of M1 macrophages, which augments their potential as TB vaccine candidates.


Assuntos
Vacina BCG/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Tuberculose Pulmonar/imunologia , Animais , Macrófagos/efeitos dos fármacos , Camundongos , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/prevenção & controle , Vacinas Sintéticas/imunologia
20.
Pathogens ; 9(7)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630646

RESUMO

Campylobacter jejuni is a major foodborne pathogen and common cause of bacterial enteritis worldwide. A total of 622 C. jejuni isolates recovered from food animals and retail meats in the United States through the National Antimicrobial Resistance Monitoring System between 2013 and 2017 were sequenced using an Illumina MiSeq. Sequences were combined with WGS data of 222 human isolates downloaded from NCBI and analyzed by core genome multilocus sequence typing (cgMLST) and traditional MLST. cgMLST allelic difference (AD) thresholds of 0, 5, 10, 25, 50, 100 and 200 identified 828, 734, 652, 543, 422, 298 and 197 cgMLST types among the 844 isolates, respectively, and traditional MLST identified 174 ST. The cgMLST scheme allowing an AD of 200 (cgMLST200) revealed strong correlation with MLST. cgMLST200 showed 40.5% retail chicken isolates, 56.5% swine, 77.4% dairy cattle and 78.9% beef cattle isolates shared cgMLST sequence type with human isolates. All ST-8 had the same cgMLST200 type (cgMLST200-12) and 74.3% of ST-8 and 75% cgMLST200-12 were confirmed as sheep abortion virulence clones by PorA analysis. Twenty-nine acquired resistance genes, including 21 alleles of blaOXA, tetO, aph(3')-IIIa, ant(6)-Ia, aadE, aad9, aph(2')-Ig, aph(2')-Ih, sat4 plus mutations in gyrA, 23SrRNA and L22 were identified. Resistance genotypes were strongly linked with cgMLST200 type for certain groups including 12/12 cgMLST200-510 with the A103V substitution in L22 and 10/11 cgMLST200-608 with the T86I GyrA substitution associated with macrolide and quinolone resistance, respectively. In summary, the cgMLST200 threshold scheme combined with resistance genotype information could provide an excellent subtyping scheme for source attribution of human C. jejuni infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA