Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 819, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145110

RESUMO

Nitrogen-doped graphene-supported single atoms convert CO2 to CO, but fail to provide further hydrogenation to methane - a finding attributable to the weak adsorption of CO intermediates. To regulate the adsorption energy, here we investigate the metal-supported single atoms to enable CO2 hydrogenation. We find a copper-supported iron-single-atom catalyst producing a high-rate methane. Density functional theory calculations and in-situ Raman spectroscopy show that the iron atoms attract surrounding intermediates and carry out hydrogenation to generate methane. The catalyst is realized by assembling iron phthalocyanine on the copper surface, followed by in-situ formation of single iron atoms during electrocatalysis, identified using operando X-ray absorption spectroscopy. The copper-supported iron-single-atom catalyst exhibits a CO2-to-methane Faradaic efficiency of 64% and a partial current density of 128 mA cm-2, while the nitrogen-doped graphene-supported one produces only CO. The activity is 32 times higher than a pristine copper under the same conditions of electrolyte and bias.

2.
Adv Mater ; 30(18): e1707261, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29569283

RESUMO

The implementation of water splitting systems, powered by sustainable energy resources, appears to be an attractive strategy for producing high-purity H2 in the absence of the release of carbon dioxide (CO2 ). However, the high cost, impractical operating conditions, and unsatisfactory efficiency and stability of conventional methods restrain their large-scale development. Seawater covers 70% of the Earth's surface and is one of the most abundant natural resources on the planet. New research is looking into the possibility of using seawater to produce hydrogen through electrolysis and will provide remarkable insight into sustainable H2 production, if successful. Here, guided by density functional theory (DFT) calculations to predict the selectivity of gas-evolving catalysts, a seawater-splitting device equipped with affordable state-of-the-art electrocatalysts composed of earth-abundant elements (Fe, Co, Ni, and Mo) is demonstrated. This device shows excellent durability and specific selectivity toward the oxygen evolution reaction in seawater with near 100% Faradaic efficiency for the production of H2 and O2 . Powered by a single commercial III-V triple-junction photovoltaic cell, the integrated system achieves spontaneous and efficient generation of high-purity H2 and O2 from seawater at neutral pH with a remarkable 17.9% solar-to-hydrogen efficiency.

3.
ACS Appl Mater Interfaces ; 7(51): 28105-9, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26673013

RESUMO

In situ transformation of glutathione-capped gold (Aux) clusters to gold (Au) nanocrystals under simulated solar light irradiation was achieved and utilized as a facile synthetic approach to rationally fabricate Aux/Au/TiO2 ternary and Au/TiO2 binary heterostructures. Synergistic interaction of Aux clusters and Au nanocrystals contributes to enhanced visible-light-driven photocatalysis.

4.
Sci Rep ; 4: 6983, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25382139

RESUMO

We fabricated a highly efficient (with a solar-to-electricity conversion efficiency (η) of 8.1%) Pt-free dye-sensitized solar cell (DSSC). The counter electrode was made of cobalt sulfide (CoS) nanoparticles synthesized via surfactant-assisted preparation of a metal organic framework, ZIF-67, with controllable particle sizes (50 to 320 nm) and subsequent oxidation and sulfide conversion. In contrast to conventional Pt counter electrodes, the synthesized CoS nanoparticles exhibited higher external surface areas and roughness factors, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) element mapping, and electrochemical analysis. Incident photon-to-current conversion efficiency (IPCE) results showed an increase in the open circuit voltage (VOC) and a decrease in the short-circuit photocurrent density (Jsc) for CoS-based DSSCs compared to Pt-based DSSCs, resulting in a similar power conversion efficiency. The CoS-based DSSC fabricated in the study show great potential for economically friendly production of Pt-free DSSCs.

5.
ChemSusChem ; 7(6): 1551-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24850493

RESUMO

We report an effective route for the preparation of layered reduced graphene oxide (rGO) with uniformly coated polyaniline (PANI) layers. These nanocomposites are synthesized by chemical oxidative polymerization of aniline monomer in the presence of layered rGO. SEM, TEM, X-ray photoelectron spectroscopy (XPS), FTIR, and Raman spectroscopy analysis results demonstrated that reduced graphene oxide-polyaniline (rGO-PANI) nanocomposites are successfully synthesized. Because of synergistic effects, rGO-PANI nanocomposites prepared by this approach exhibit excellent capacitive performance with a high specific capacitance of 286 F g(-1) and high cycle reversibility of 94 % after 2000 cycles.


Assuntos
Compostos de Anilina/química , Grafite/química , Nanocompostos/química , Óxidos/química , Capacitância Elétrica , Eletroquímica , Eletrodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredução , Espectroscopia Fotoeletrônica , Platina/química , Polimerização , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Ácidos Sulfúricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA