Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913438

RESUMO

Herein, we present a catalyst-free contact-electro-catalytic method for synthesizing hydrogen peroxide (H2O2) by combining continuous agitation with a poly(tetrafluoroethylene) (PTFE) stir bar and ultrasonication. A high H2O2 production rate of 256.6 µM h-1 is achieved under ambient conditions without adding particle catalysts and sacrificial agents, which is competitive with recent advancements in redox technology. Eco-friendliness, convenience and efficiency make this process a promising alternative method for H2O2 synthesis.

2.
Adv Healthc Mater ; : e2303388, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537119

RESUMO

Repairing spinal cord injury (SCI) is a global medical challenge lacking effective clinical treatment. Developing human-engineered spinal cord tissues that can replenish lost cells and restore a regenerative microenvironment offers promising potential for SCI therapy. However, creating vascularized human spinal cord-like tissues (VSCT) that mimic the diverse cell types and longitudinal parallel structural features of spinal cord tissues remains a significant hurdle. In the present study, VSCTs are engineered using embryonic human spinal cord-derived neural and endothelial cells on linear-ordered collagen scaffolds (LOCS). Studies have shown that astrocytes and endothelial cells align along the scaffolds in VSCT, supporting axon extension from various human neurons myelinated by oligodendrocytes. After transplantation into SCI rats, VSCT survives at the injury sites and promotes endogenous neural regeneration and vascularization, ultimately reducing scarring and enhancing behavioral functional recovery. It suggests that pre-vascularization of engineered spinal cord tissues is beneficial for SCI treatment and highlights the important role of exogenous endothelial cells in tissue engineering.

3.
Environ Pollut ; 342: 123103, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070649

RESUMO

The knowledge of dynamic trend in soil heavy metal contamination and associated risk is important for soil pollution prevention, safe utilization and early warning of soil environmental quality and ecological risk. In this study, a modified integrated risk index (NIRI) was adopted to evaluate ecological risk in agricultural soil in Wenzhou with 70 samples, which is located in the southeast of China. In addition, two scenarios with different metal fluxes (optimistic and default scenario) were constructed to predict future dynamic trend of metal concentrations. Results showed the agricultural soil was mainly contaminated by Cd and Pb. The NIRI indicated moderate to considerable risk in most sites and Cd posed the greatest contribution to NIRI value. Besides, higher risk was determined in paddy soil than that in vegetable. Scenario simulation results revealed general declining trend in optimistic scenario while increasing trend in default scenario for metal concentration. However, exceedance varied with prediction period, soil types and metals. Ecological risk probability showed similar trend with metal concentration, indicating significant shift to higher risk level in default scenario while insignificant decrease in optimistic scenario. The proposed scenario simulation results provide reference to support soil quality improvement and risk management.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Monitoramento Ambiental/métodos , Cádmio , Medição de Risco , Poluentes do Solo/análise , Metais Pesados/análise , China
4.
Environ Sci Pollut Res Int ; 30(60): 126045-126056, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008835

RESUMO

In the last few decades, U(VI) is a significant environmental threat. The innovative and environmentally friendly adsorbent materials for U(VI) removal were urgent. Preparation of the modified biochar from wheat straw by combined composites of MnFe2O4 nanoparticles and chitosan Schiff base (MnFe2O4@CsSB/BC) was characterized, and adsorption experiments were carried out to investigate the performance and interfacial mechanism of U(VI) removal. The results showed that MnFe2O4@CsSB/BC exhibited high adsorption capacity of U(VI) compared with BC. The adsorption process of U(VI) removal by MnFe2O4@CsSB/BC could be ascribed as pseudo-second-order model and Langmuir model. The maximum adsorption capacity of U(VI) removal by MnFe2O4@CsSB/BC reached 19.57 mg/g at pH4.0, 30 mg/L of U(VI), and 25 °C. The possible mechanism was a chemical adsorption process, and it mainly contained electrostatic attraction and surface complexation. Additionally, it also was an economic and environmental friendly adsorbent.


Assuntos
Quitosana , Nanopartículas , Poluentes Químicos da Água , Quitosana/química , Triticum , Bases de Schiff , Água/química , Nanopartículas/química , Carvão Vegetal/química , Adsorção , Poluentes Químicos da Água/análise , Cinética , Cromo/química
5.
Inorg Chem ; 62(39): 15834-15841, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37724987

RESUMO

A highly sensitive detection of ultraviolet (UV) radiation is required in a broad range of scientific research, chemical industries, and health-related applications. Traditional UV photodetectors fabricated by direct wide-band-gap inorganic semiconductors often suffer from several disadvantages such as complicated manufacturing procedures, requiring multiple operations and high-cost instruments to obtain a readout. Searching for new materials or simple strategies to develop UV dosimeters for quantitative, accurate, and on-site detection of UV radiation dose is still highly desirable. Herein, a photochromic uranyl-based coordination polymer [(UO2)(PBPCA)·DMF]·DMF (PBPCA = pyridine-3,5-bis(phenyl-4-carboxylate), DMF = N,N'-dimethylformamide, denoted as SXU-1) with highly radiolytic and chemical stabilities was successfully synthesized via the solvothermal method at 100 °C. Surprisingly, the fresh samples of SXU-1 underwent an ultra-fast UV-induced (365 nm, 2 mW) color variation from yellow to orange in less than 1 s, and then the color changed further from orange to brick red after the subsequent irradiation, inspiring us to develop a colorimetric dosimeter based on red-green-blue (RGB) parameters. The mechanism of radical-induced photochromism was intensively investigated by UV-vis absorption spectra, EPR analysis, and SC-XRD data. Furthermore, SXU-1 was incorporated into an optoelectronic device to fabricate a novel dosimeter for convenient, quantitative, and on-site detection of UV radiation dose.

6.
Sci Total Environ ; 901: 166453, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37607627

RESUMO

Covalent organic frameworks (COFs), assembling through covalent bonds, are a rising class of porous materials. Nowadays, various COFs are widely applied in organic pollutants decontamination due to the outstanding capabilities of large surface area, multiple functional groups, porous structure, excellent absorptivity, flexible design and so on. This review concentrates on the applications of COFs in different decontamination technologies such as solid-phase extraction, membrane filtration and sieving, adsorption, and catalysis reaction. The factors influencing water chemistry, such as pH, temperature, salt concentration and natural organic matter, are summarized in terms of their impact on decontamination performance and the extraction mechanisms for the diverse analytes. The interaction mechanisms between COFs and organic pollutants were hydrogen bonding, π-π stacking, hydrophilic, hydrophobic, and electrostatic interactions. Furthermore, a perspective on current obstacles and upcoming developments of COFs for organic pollutant removal has been provided. Due to their adaptable and versatile design as well as elaborate and diverse functionalization, COFs possess significant possibility in ameliorating environmental pollution.

7.
Environ Sci Pollut Res Int ; 30(42): 96350-96359, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572256

RESUMO

Heavy metal pollution is one of the environmental problems that need to be solved urgently. The adsorption method is thought as the most effective and economical treatment technology. Nature biochar usually showed unsatisfactory adsorption capacity due to its relatively small adsorption capacity and slow adsorption rate. The metal of Mn has been widely applied in the modification of biochar, which could effectively improve the adsorption capacity of biochar. However, leaching of Mn2+ on the adsorbent materials would appear during the adsorption process. And it would increase the risk of secondary pollution. The multifunctional binary modified biochar could improve the adsorption capacity of environmental pollutant removal. In addition, it could also act as a metal support carrier, reducing the risk of secondary pollution. A novel effective biochar loaded by Mg-Mn binary oxide nanoparticles (MgMn2O4@Biochar) was prepared and applied for the Cr(VI) and Pb(II) removal in aqueous solution. The characteristic of MgMn2O4@Biochar was analyzed by SEM, TEM, FTIR, and XRD. The irregular and somewhat flaky shaped particles of different shape and sizes clustered on the surface of MgMn2O4@Biochar appeared. Abundant functional groups of O-H, -C-OH, C-O, and C-OOH could be observed on the surface of MgMn2O4@Biochar. The elements of Mg and Mn elements besides of C, O, and Si elements were presented on the surface of MgMn2O4@Biochar. The wt% of C, O, Mg, Mn, and Si were 42.82%, 48.99%, 2.83%, 4.44%, and 0.93%, respectively. The operational parameters had an important influence on adsorption capacity of Cr(VI) and Pb(II) removal. The results showed that the adsorption capacity of MgMn2O4@Biochar for Cr(VI) and Pb(II) would reach 33.5 mg/g and 536 mg/g, respectively, within 360 min. Additionally, the adsorption processes of Cr(VI) and Pb(II) in solution could be described with pseudo-second-order. For Cr(VI), the Langmuir model was suitable to the adsorption process. However, the adsorption process of Pb(II) in solution could be described with Freundlich model. Furthermore, it could be concluded that the possible mechanism of Cr(VI) and Pb(II) removal by MgMn2O4@Biochar was physical adsorption, surface complexation reaction, and electrostatic adsorption.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Chumbo , Adsorção , Poluentes Químicos da Água/análise , Cromo/análise , Carvão Vegetal , Cinética
8.
Biomater Adv ; 153: 213502, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37352743

RESUMO

Cardiovascular disease (CVD) is one of the important causes of death worldwide. The incidence and mortality rates are increasing annually with the intensification of social aging. The efficacy of drug therapy is limited in individuals suffering from severe heart failure due to the inability of myocardial cells to undergo regeneration and the challenging nature of cardiac tissue repair following injury. Consequently, surgical transplantation stands as the most efficient approach for treatment. Nevertheless, the shortage of donors and the considerable number of heart failure patients worldwide, estimated at 26 million, results in an alarming treatment deficit, with only around 5000 heart transplants feasible annually. The existing major alternatives, such as mechanical or xenogeneic hearts, have significant flaws, such as high cost and rejection, and are challenging to implement for large-scale, long-term use. An organoid is a three-dimensional (3D) cell tissue that mimics the characteristics of an organ. The critical application has been rated in annual biotechnology by authoritative journals, such as Science and Cell. Related industries have achieved rapid growth in recent years. Based on this technology, cardiac organoids are expected to pave the way for viable heart repair and treatment and play an essential role in pathological research, drug screening, and other areas. This review centers on the examination of biomaterials employed in cardiac repair, strategies employed for the reconstruction of cardiac structure and function, clinical investigations pertaining to cardiac repair, and the prospective applications of cardiac organoids. From basic research to clinical practice, the current status, latest progress, challenges, and prospects of biomaterial-based cardiac repair are summarized and discussed, providing a reference for future exploration and development of cardiac regeneration strategies.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Humanos , Materiais Biocompatíveis/uso terapêutico , Miócitos Cardíacos , Organoides
9.
Dalton Trans ; 52(24): 8247-8261, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37249487

RESUMO

The synthesis and development of cost-effective and high-efficiency adsorption-photocatalysis bifunctional treatment agents for uranium-containing wastewater is of great importance. In this work, we successfully synthesized layered double hydroxides (LDHs, NiAl and ZnNiAl) with different nickel coordination environments and investigated the adsorption activity and photocatalytic removal performance of uranium (U(VI)) under visible light. The adsorption experimental results showed that the adsorption capacity of NiAl was about four times that of ZnNiAl, and the excellent adsorption properties of NiAl originated from its large surface area and surface Ni-OH groups, which had a high coordination ability toward U(VI). In addition, NiAl had a narrower band gap than ZnNiAls due to the electronegativity of Ni2+(1.91) being greater than Zn2+(1.65), and NiAl (0.055 h-1) exhibited a higher efficiency of U(VI) photoreduction than ZnNiAl (0.0138 h-1) under visible light. Thus, NiAl showed dual properties of adsorption and photoreduction. In the process of photocatalysis, the photogenerated electrons and generated ˙O2- radicals could reduce the absorbed U(VI) into insoluble UO2(s) and U3O8. Consequently, photocatalytic reduction could further improve the performance of NiAl in removing U(VI) from the solution. NiAl with its low cost and disposal simplicity could be exploited for the decontamination of U(VI), involving surface complexation and photocatalytic reduction.

10.
Appl Microbiol Biotechnol ; 107(11): 3673-3685, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37115253

RESUMO

The effects of different monoculture years on rhizosphere fungal communities (abundance, diversity, structure, and cooccurrence network) of cut chrysanthemum were determined. Three different monoculture years were (i) planting for only 1 year (Y1), (ii) continuous monoculture for 6 years (Y6), and (iii) continuous monoculture for 12 years (Y12). Compared to the Y1 treatment, the Y12 treatment significantly decreased the rhizosphere fungal gene copy numbers but increased the potential pathogen Fusarium oxysporum (P < 0.05). Both the Y6 and Y12 treatments significantly increased fungal diversity (Shannon and Simpson indices), but Y6 had great potential to enhance fungal richness (Chao1 index) relative to the Y12 treatment. Monoculture treatments decreased the relative abundance of Ascomycota but increased that of Mortierellomycota. Four ecological clusters (Modules 0, 3, 4, and 9) were observed in the fungal cooccurrence network across the Y1, Y6, and Y12 treatments, and only Module 0 was significantly enriched in the Y12 treatment and associated with soil properties (P < 0.05). RDA (redundancy analysis) and Mantel analysis showed that soil pH and soil nutrients (organic carbon, total nitrogen, and available phosphorus) were the key factors affecting fungal communities during monoculture of cut chrysanthemum. Overall, the changes in soil properties were responsible for shaping rhizospheric soil fungal communities in long-term rather than short-term monoculture systems. KEY POINTS: • Both short- and long-term monocultures reshaped the soil fungal community structure. • Long-term monoculture enhanced the network complexity of the fungal community. • Soil pH, C and N levels mainly drove modularization in the fungal community network.


Assuntos
Chrysanthemum , Micobioma , Rizosfera , Microbiologia do Solo , Solo/química
11.
Sci Total Environ ; 869: 161767, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702283

RESUMO

With the rapid development of industrialization and agriculture, a series of critical imminent environmental problems and water pollution have caught wide attention from the public and society. Piezoelectric catalysis technology with piezoelectric materials is a green and environmental method that can efficiently improve the separation of electron-hole pairs, then generating the active substances such as OH, H2O2 and O2-, which can degrade water pollutants. Therefore, we firstly surveyed the piezoelectric catalysis in piezoelectric materials and systematically concluded and emphasized the relationship between piezoelectric materials and the piezoelectric catalytic mechanism, the goal to elucidate the effect of polarization on piezoelectric catalytic performance and enhance piezoelectric catalytic performance. Subsequently, the applications of piezoelectric materials in water treatment and environmental pollutant remediation were discussed including degradation of organic pollutants, removal of heavy mental ions, radionuclides, bacteria disinfection and water splitting for H2 generation. Finally, the development prospects and future outlooks of piezoelectric catalysis were presented in detail.

12.
Research (Wash D C) ; 2022: 9790320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36320635

RESUMO

In this work, a CdS/BiVO4 step-scheme (S-scheme) heterojunction with self-photothermally enhanced photocatalytic effect was synthesized and applied for efficient U(VI) photoextraction. Characterizations such as transient absorption spectroscopy and Tafel test together confirmed the formation of S-scheme heterojunctions, which allows CdS/BiVO4 to avoid photocorrosion while retaining the strong reducing capacity of CdS and the oxidizing capacity of BiVO4. Experimental results such as radical quenching experiments and electron spin resonance show that U(VI) is rapidly oxidized by photoholes/•OH to insoluble UO2(OH)2 after being reduced to U(IV) by photoelectrons/•O2 -, which precisely avoids the depletion of electron sacrificial agents. The rapid recombination of electron-hole pairs triggered by the S-scheme heterojunction is found to release large amounts of heat and accelerate the photocatalysis. This work offers a new enhanced strategy for photocatalytic uranium extraction and presents a direction for the design and development of new photocatalysts.

13.
Environ Technol ; : 1-10, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215213

RESUMO

Brominated flame retardants (BFRs) are a group of contaminants of emerging environmental concern. In this study, systematic exploration was carried out to investigate the degradation of tetrabromobisphenol S (TBBPS), a typical emerging BFRs, by thermally activated persulfate (PDS) oxidation. The removal of 5.0 µM TBBPS was 100% after 60 min oxidation treatment under 60 °C. Increasing the temperature or initial PDS concentration facilitated the degradation efficiency of TBBPS. The quenching test indicated that TBBPS degradation occurred via the attack of both sulfate radicals and hydroxyl radicals. Natural organic matter (NOM) decreased the removal rate, however, complete disappearance of TBBPS could still be obtained. Six intermediate products were formed during reactions between TBBPS and radicals. Transformation pathways including debromination, ß-Scission, and cross-coupling were proposed. Brominated disinfection byproducts (DBPs) in situ formed during the degradation of TBBPS were also investigated, such as bromoform and dibromoacetic acid. The presence of NOM reduced the formation rates of brominated DBPs. Results reveal that although thermo-activated PDS is a promising method for TBBPS-contaminated water, it can lead to potential brominated DBPs risks, which should be paid more attention when SO4•--based oxidation technology is applied.

14.
Sci Rep ; 12(1): 15880, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151096

RESUMO

Formation of chlorate (ClO3-) and perchlorate (ClO4-) as by-products in electrooxidation process has raised concern. In the present study, the formation of ClO3- and ClO4- in the presence of 1.0 mM Cl- on boron doped diamond (BDD) and Magneli phase titanium suboxide (Ti4O7) anodes were evaluated. The Cl- was transformed to ClO3- (temporal maximum 276.2 µM) in the first 0.5 h on BDD anodes with a constant current density of 10 mA cm2, while approximately 1000 µM ClO4- was formed after 4.0 h. The formation of ClO3- on the Ti4O7 anode was slower, reaching a temporary maximum of approximately 350.6 µM in 4.0 h, and the formation of ClO4- was also slower on the Ti4O7 anode, taking 8.0 h to reach 780.0 µM. Compared with the BDD anode, the rate of ClO3- and ClO4- formation on the Ti4O7 anode were always slower, regardless of the supporting electrolytes used in the experiments, including Na2SO4, NaNO3, Na2B4O7, and Na2HPO4. It is interesting that the formation of ClO4- during electrooxidation was largely mitigated or even eliminated, when methanol, KI, and H2O2 were included in the reaction solutions. The mechanism of the inhibition on Cl- transformation by electrooxidation was explored.


Assuntos
Percloratos , Poluentes Químicos da Água , Boro , Cloratos , Diamante , Eletrodos , Peróxido de Hidrogênio , Metanol , Oxirredução , Titânio/farmacologia , Poluentes Químicos da Água/análise
15.
Nanoscale Adv ; 4(5): 1246-1262, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133685

RESUMO

With the fast development of industry, large amounts of organic and inorganic pollutants are inevitably released into the natural environment, which results in the pollution of the environment and are thereby dangerous to human health. The efficient elimination of these pollutants is crucial to environment protection and human health. The high sorption capacity of carbon-based materials and high photocatalytic ability of carbon-based composites result in the application of carbon-based materials in environmental pollution cleanup. In this review article, we summarized recent studies on the synthesis of carbon-based materials, and their application in the sorption of organic and inorganic pollutants, the photocatalytic degradation of organic pollutants, and the in situ photocatalytic reduction-solidification of heavy metal ions. The sorption method is useful to remove pollutants from aqueous solutions. The sorption-photocatalytic degradation of organic pollutants is applicable, especially at low concentrations, whereas the catalytic reduction of metal ions is the best method for the in situ immobilization of high valent metal ions under complicated conditions. The interaction mechanism is discussed using advanced spectroscopy analysis and theoretical calculations, and at the end the challenges in the future are described.

16.
Int J Biol Macromol ; 219: 886-896, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35961556

RESUMO

Herein, a magnetic MXenes based composite (Fe3O4@Ti3C2-NH2-PT) was constructed by loading Fe3O4 nano-particles into the interlamellar spacing of persimmon tannin-functionalized Ti3C2-NH2. The structure, morphology and physicochemical properties of the as-prepared adsorbents were probed by advanced spectroscopy techniques, while the impact of various experimental conditions like pH values, amount of adsorbent and contact time on the removal trend were examined by batch experiments. The elimination results revealed that Fe3O4@Ti3C2-NH2-PT could be applied in a wide range of initial concentrations, and exhibited outstanding removal efficiency for U(VI) (104.9 mg/g, pH = 5.0) and Cr(VI) (83.8 mg/g, pH = 2.0). Meanwhile, the adsorption process was described well with the Langmuir isotherm and Pseudo-second-order kinetics models, which indicated that the monolayer chemical adsorption occurred during elimination of the two contaminants. The spectral analysis results manifested that elimination of U(VI) followed an inner-sphere configuration, whereas uptake of Cr(VI) was determined by electrostatic interaction and adsorption-reduction process. This work opened a new opportunity in designing MXenes based adsorbents in the application for environmental remediation.


Assuntos
Diospyros , Poluentes Químicos da Água , Adsorção , Cromo/química , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Taninos , Poluentes Químicos da Água/química
17.
Innovation (Camb) ; 3(5): 100281, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35880235

RESUMO

Metal-organic frameworks (MOFs) have garnered multidisciplinary attention due to their structural tailorability, controlled pore size, and physicochemical functions, and their inherent properties can be exploited by applying them as precursors and/or templates for fabricating derived hollow porous nanomaterials. The fascinating, functional properties and applications of MOF-derived hollow porous materials primarily lie in their chemical composition, hollow character, and unique porous structure. Herein, a comprehensive overview of the synthetic strategies and emerging applications of hollow porous materials derived from MOF-based templates and/or precursors is given. Based on the role of MOFs in the preparation of hollow porous materials, the synthetic strategies are described in detail, including (1) MOFs as removable templates, (2) MOF nanocrystals as both self-sacrificing templates and precursors, (3) MOF@secondary-component core-shell composites as precursors, and (4) hollow MOF nanocrystals and their composites as precursors. Subsequently, the applications of these hollow porous materials for chemical catalysis, electrocatalysis, energy storage and conversion, and environmental management are presented. Finally, a perspective on the research challenges and future opportunities and prospects for MOF-derived hollow materials is provided.

18.
Food Sci Nutr ; 10(7): 2255-2270, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35844911

RESUMO

The volatile flavor compounds of Huangjiu (Chinese rice wine) brewed from different raw materials were obviously different, but there were few studies on the volatile flavor compounds of Huangjiu brewed from different wheat Qu at different brewing stages. In this paper, headspace-solid phase microextraction combined with gas chromatography-mass spectrometry, combined with principal component analysis and sensory evaluation, was used to determine the volatile flavor compounds in Huangjiu brewed from wheat Qu made by hand and wheat Qu made by mechanical. The results showed that there were significant differences in the contents and types of volatile flavor substances in Huangjiu brewed from different wheat Qu at fermentation stages, and the prefermentation and postfermentation Huangjiu samples could be well distinguished from each other. Compared with the Huangjiu brewed from wheat Qu made by mechanical, the Huangjiu brewed from wheat Qu made by hand has stronger aroma and better taste.

19.
J Environ Sci (China) ; 122: 1-13, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35717075

RESUMO

For the continuous utilization of nuclear energy and efficient control of radioactive pollution, low-cost materials with high efficient U(VI) removal are of great importance. In this study, low temperature plasma method was applied for the successful modification of O-phosphorylethanolamine (O-PEA) on the porous carbon materials. The produced materials (Cafe/O-PEA) could adsorb U(VI) efficiently with the maximum sorption capacity of 648.54 mg/g at 1 hr, T=298 K, and pH=6.0, much higher than those of most carbon-based composites. U(VI) sorption was mainly controlled by strong surface complexation. From FTIR, SEM-EDS and XPS analyses, the sorption of U(VI) was related to the complexation with -NH2, phosphate and -OH groups on Cafe/O-PEA. The low temperature plasma method was an efficient, environmentally friendly and low-cost method for surface modification of materials for the effective enrichment of U(VI) from aqueous solutions.


Assuntos
Carbono , Urânio , Adsorção , Café , Fosfatos , Porosidade , Temperatura
20.
Nanomaterials (Basel) ; 12(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35564151

RESUMO

With the fast development of industry and nuclear energy, large amounts of different radionuclides are inevitably released into the environment. The efficient solidification or elimination of radionuclides is thereby crucial to environmental pollution and human health because of the radioactive hazardous of long-lived radionuclides. The properties of negatively or positively charged radionuclides are quite different, which informs the difficulty of simultaneous elimination of the radionuclides. Herein, we summarized recent works about the selective sorption or catalytic reduction of target radionuclides using different kinds of nanomaterials, such as carbon-based nanomaterials, metal-organic frameworks, and covalent organic frameworks, and their interaction mechanisms are discussed in detail on the basis of batch sorption results, spectroscopy analysis and computational calculations. The sorption-photocatalytic/electrocatalytic reduction of radionuclides from high valent to low valent is an efficient strategy for in situ solidification/immobilization of radionuclides. The special functional groups for the high complexation of target radionuclides and the controlled structures of nanomaterials can selectively bind radionuclides from complicated systems. The challenges and future perspective are finally described, summarized, and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA