Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Hematol Oncol ; 13(1): 20, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388466

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is closely associatedwith chronic liver diseases, particularly liver cirrhosis, which has an altered extracellular matrix (ECM) composition. The influence and its mechanism of the cirrhotic-ECM on the response of HCC to immune checkpoint inhibitor (ICI) remains less clarified. METHODS: In silico, proteomic and pathological assessment of alteration of cirrhotic-ECM were applied in clinical cohort. Multiple pre-clinical models with ECM manipulation were used to evaluate cirrhotic-ECM's effect on ICI treatment. In silico, flow cytometry and IHC were applied to explore how cirrhotic-ECM affect HCC microenvironment. In vitro and in vivo experiments were carried out to identify the mechanism of how cirrhotic-ECM undermined ICI treatment. RESULTS: We defined "a pro-tumor cirrhotic-ECM" which was featured as the up-regulation of collagen type 1 (Col1). Cirrhotic-ECM/Col1 was closely related to impaired T cell function and limited anti PD-1 (aPD-1) response of HCC patients from the TCGA pan cancer cohort and the authors' institution, as well as in multiple pre-clinical models. Mechanically, cirrhotic-ECM/Col1 orchestrated an immunosuppressive microenvironment (TME) by triggering Col1-DDR1-NFκB-CXCL8 axis, which initiated neutrophil extracellular traps (NETs) formation to shield HCC cells from attacking T cells and impede approaching T cells. Nilotinib, an inhibitor of DDR1, reversed the neutrophils/NETs dominant TME and efficiently enhanced the response of HCC to aPD-1. CONCLUSIONS: Cirrhotic-ECM modulated a NETs enriched TME in HCC, produced an immune suppressive TME and weakened ICI efficiency. Col1 receptor DDR1 could be a potential target synergically used with ICI to overcome ECM mediated ICI resistance. These provide a mechanical insight and novel strategy to overcome the ICI resistance of HCC.

2.
Med ; 4(10): 728-743.e7, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37633269

RESUMO

BACKGROUND: Identifying a metastasis-correlated immune cell composition within the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) will help to develop promising and innovative therapeutic strategies. However, the dynamics of immune cell lineages in the TME of advanced PDAC remains elusive. METHODS: Twenty-six samples from 11 patients (including 11 primary tumor tissues, 10 blood, and 5 lymph nodes) with different stages were used to develop a multiscale immune profile. High-dimensional single-cell analysis with mass cytometry was performed to search for metastasis-correlated immune changes in the microenvironment. The findings were further validated by published single-cell RNA sequencing (scRNA-seq) data and multiplex fluorescent immunohistochemistry. FINDINGS: High-dimensional single-cell profiling revealed that the three immune-relevant sites formed a distinct immune atlas. Interestingly, the PDAC microenvironment with the potential for metastatic spread to the liver was characterized by a decreased proportion of CD103+PD-1+CD39+ T cells with cytotoxic and exhausted functional status and an increased proportion of CD73+ macrophages. Analysis of scRNA-seq data of PDAC further confirmed the identified subsets and revealed strong potential interactions via various ligand-receptor pairs between the identified T subsets and the macrophages. Moreover, stratified patients with different immune compositions correlated with clinical outcomes of PDAC. CONCLUSIONS: Our study uncovered metastasis-correlated immune changes, suggesting that ecosystem-based patient classification in PDAC will facilitate the identification of candidates likely to benefit from immunotherapy. FUNDING: This work was supported by the National Key Research and Development Program of China, the Shanghai International Science and Technology Collaboration Program, the Shanghai Sailing Program, and the Key Laboratory of diagnosis and treatment of severe hepato-pancreatic diseases of Zhejiang Province.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Ecossistema , China , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral , Neoplasias Pancreáticas
3.
Cell Rep ; 42(7): 112666, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37347667

RESUMO

Protein lysine crotonylation has been recently identified as a vital posttranslational modification in cellular processes, particularly through the modification of histones. We show that lysine crotonylation is an important modification of the cytoplastic and mitochondria proteins. Enzymes in glycolysis, the tricarboxylic acid (TCA) cycle, fatty acid metabolism, glutamine metabolism, glutathione metabolism, the urea cycle, one-carbon metabolism, and mitochondrial fusion/fission dynamics are found to be extensively crotonylated in pancreatic cancer cells. This modulation is mainly controlled by a pair of crotonylation writers and erasers including CBP/p300, HDAC1, and HDAC3. The dynamic crotonylation of metabolic enzymes is involved in metabolism regulation, which is linked with tumor progression. Interestingly, the activation of MTHFD1 by decrotonylation at Lys354 and Lys553 promotes the development of pancreatic cancer by increasing resistance to ferroptosis. Our study suggests that crotonylation represents a metabolic regulatory mechanism in pancreatic cancer progression.


Assuntos
Lisina , Neoplasias Pancreáticas , Humanos , Lisina/metabolismo , Histonas/metabolismo , Glicólise , Processamento de Proteína Pós-Traducional
4.
Signal Transduct Target Ther ; 6(1): 249, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34219130

RESUMO

Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Microambiente Tumoral/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/terapia , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Prognóstico , Neoplasias Pancreáticas
5.
Front Immunol ; 11: 589997, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193421

RESUMO

Background and Aims: Pyruvate kinase M2 (PKM2) is an essential regulator of the Warburg effect, but its biological function promoting immune escape of hepatocellular carcinoma (HCC) is unclear. Methods: GEPIA web tool and immunohistochemistry (IHC) analysis were employed to evaluate the clinical relevance of PKM2 in HCC patients. Both in vitro CCK-8, colony formation, and transwell assays, and in vivo xenografts were performed to evaluate the malignancy of HCC cells. PKM2 and PD-L1 levels were examined by Western blot, qRT-PCR, and IHC. The role of PKM2 on in vivo immune response was also investigated. Results: PKM2 was significantly upregulated in HCC and associated with a poor prognosis of HCC patients. Knockdown of PKM2 inhibited in vitro proliferation, migration, and invasion of HCC cells, as well as in vivo tumor growth. Strikingly, PKM2 showed a strong correlation with the expression of immune inhibitory cytokines and lymphocyte infiltration in HCC. The overexpression of PKM2 sensitized HCC to immune checkpoint blockade, which enhanced IFN-γ positive CD8 T cells in HCC mice models. Conclusion: PKM2 might be a predictor and a potential therapeutic target for immune checkpoint inhibitors in HCC.


Assuntos
Carcinoma Hepatocelular/imunologia , Proteínas de Transporte/imunologia , Neoplasias Hepáticas/imunologia , Proteínas de Membrana/imunologia , Hormônios Tireóideos/imunologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular , Progressão da Doença , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Tolerância Imunológica , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Prognóstico , Microambiente Tumoral/imunologia , Proteínas de Ligação a Hormônio da Tireoide
6.
J Hematol Oncol ; 13(1): 152, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168028

RESUMO

Exosomes are a subset of extracellular vesicles that carry specific combinations of proteins, nucleic acids, metabolites, and lipids. Mounting evidence suggests that exosomes participate in intercellular communication and act as important molecular vehicles in the regulation of numerous physiological and pathological processes, including cancer development. Exosomes are released by various cell types under both normal and pathological conditions, and they can be found in multiple bodily fluids. Moreover, exosomes carrying a wide variety of important macromolecules provide a window into altered cellular or tissue states. Their presence in biological fluids renders them an attractive, minimally invasive approach for liquid biopsies with potential biomarkers for cancer diagnosis, prediction, and surveillance. Due to their biocompatibility and low immunogenicity and cytotoxicity, exosomes have potential clinical applications in the development of innovative therapeutic approaches. Here, we summarize recent advances in various technologies for exosome isolation for cancer research. We outline the functions of exosomes in regulating tumor metastasis, drug resistance, and immune modulation in the context of cancer development. Finally, we discuss prospects and challenges for the clinical development of exosome-based liquid biopsies and therapeutics.


Assuntos
Exossomos/patologia , Neoplasias/patologia , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Pesquisa Biomédica , Comunicação Celular , Precipitação Química , Exossomos/imunologia , Exossomos/metabolismo , Humanos , Imunoterapia/métodos , Dispositivos Lab-On-A-Chip , Biópsia Líquida , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Ultracentrifugação/métodos
7.
Br J Cancer ; 122(2): 209-220, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819189

RESUMO

BACKGROUND: Mitochondrial dynamics plays an important role in tumour progression. However, how these dynamics integrate tumour metabolism in hepatocellular carcinoma (HCC) metastasis is still unclear. METHODS: The mitochondrial fusion protein mitofusin-1 (MFN1) expression and its prognostic value are detected in HCC. The effects and underlying mechanisms of MFN1 on HCC metastasis and metabolic reprogramming are analysed both in vitro and in vivo. RESULTS: Mitochondrial dynamics, represented by constant fission and fusion, are found to be associated with HCC metastasis. High metastatic HCC displays excessive mitochondrial fission. Among genes involved in mitochondrial dynamics, MFN1 is identified as a leading downregulated candidate that is closely associated with HCC metastasis and poor prognosis. While promoting mitochondrial fusion, MFN1 inhibits cell proliferation, invasion and migration capacity both in vitro and in vivo. Mechanistically, disruption of mitochondrial dynamics by depletion of MFN1 triggers the epithelial-to-mesenchymal transition (EMT) of HCC. Moreover, MFN1 modulates HCC metastasis by metabolic shift from aerobic glycolysis to oxidative phosphorylation. Treatment with glycolytic inhibitor 2-Deoxy-D-glucose (2-DG) significantly suppresses the effects induced by depletion of MFN1. CONCLUSIONS: Our results reveal a critical involvement of mitochondrial dynamics in HCC metastasis via modulating glucose metabolic reprogramming. MFN1 may serve as a novel potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Desoxiglucose/farmacologia , GTP Fosfo-Hidrolases/genética , Glucose/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Metástase Neoplásica , Fosforilação Oxidativa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA