Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614169

RESUMO

A temperature/pH dual sensitive hydrogel with a semi-interpenetrating network (semi-IPN) structure was synthesized through an aqueous amino-succinimide reaction between water-soluble polysuccinimide and polyethyleneimine in the presence of thermosensitive cellulose derivatives. Single-factor experiments were carried out to optimize the preparation conditions of the semi-IPN hydrogel. The swelling behavior and cytotoxicity assay of the hydrogel were tested. Finally, taking 5- fluorouracil (5-Fu) as a model drug, the release performance of the 5-Fu-loaded hydrogel was investigated. The results indicated that the swelling ratio (SR) first decreased and then increased when the pH of the solutions ascended from 2 to 10. The SR decreased with the increase in temperature. In addition, the swelling behavior of the hydrogel was reversible and reproducible under different pH values and temperatures. The prepared hydrogels had good cytocompatibility. The release behavior of 5-Fu was most consistent with the Korsmeyer-Peppas model and followed the case II diffusion. The acidic environment was beneficial for the release of 5-Fu. The preparation process of the semi-IPN hydrogel is simple and the reaction can proceed quickly in water. The strategy introduced here has great potential for application in the preparation of drug carriers.


Assuntos
Celulose , Fluoruracila , Hidrogéis , Succinimidas , Temperatura , Hidrogéis/química , Hidrogéis/síntese química , Celulose/química , Celulose/análogos & derivados , Concentração de Íons de Hidrogênio , Fluoruracila/química , Fluoruracila/farmacologia , Succinimidas/química , Água/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Humanos
2.
Int J Biol Macromol ; 258(Pt 2): 128968, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154725

RESUMO

Chitosan based hydrogels with multiple stimulus responses have broad application prospects in many fields. Considering the advantages of semi interpenetrating network (IPN) technology and the special temperature and ion responsiveness of polymers containing zwitterionic groups, a semi-IPN hydrogel was prepared through in situ free radical polymerization of N,N-dimethyl acrylamide and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide with polyethylene glycol dimethacrylate as a crosslinker and carboxymethyl chitosan as filler. The gel mass fraction and swelling ratio were measured, and the preparation conditions were optimized. The result indicated that the hydrogel possessed a unique thermo-/pH-/ ion-sensitive behavior. The swelling ratio increased with the increase of temperature and ion concentration, and showed a decreasing trend with the increase in pH. In addition, the hydrogel was stable when the stimuli changed. Adsorption behavior of the hydrogel to Eosin Y (EY) was systematically investigated. The adsorption process can be described well by the pseudo-second-order kinetic model and Langmuir isotherm model, indicating that it was a chemical adsorption. The experiments indicated that the hydrogel exhibited good antifouling and reusability features. Therefore, the semi-IPN hydrogel with antifouling properties and thermo-/pH-/ion-sensitivity can be easily manufactured is expected to find applications in water treatment fields.


Assuntos
Quitosana , Quitosana/química , Hidrogéis/química , Polímeros/química , Cinética , Concentração de Íons de Hidrogênio
3.
Carbohydr Polym ; 309: 120672, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906358

RESUMO

A thermal/pH-sensitive interpenetrating network (IPN) hydrogel was prepared facilely from starch and poly(α-l-lysine) through amino-anhydride and azide-alkyne double-click reactions in one pot. The synthesized polymers and hydrogels were systematically characterized using different analytical techniques such as Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and rheometer. The preparation conditions of the IPN hydrogel were optimized via one-factor experiments. Experimental results indicated the IPN hydrogel possessed pH and temperature sensitivity. Effect of different parameters (pH, contact time, adsorbent dosage, initial concentration, ionic strength, and temperature) on adsorption behavior were investigated in monocomponent system with cationic methylene blue (MB) and anionic Eosin Y (EY) as model pollutants. The results indicated that the adsorption process of the IPN hydrogel for MB and EY followed pseudo-second-order kinetics. The adsorption data for MB and EY fitted well with the Langmuir isotherm model, indicating monolayer chemisorption. The good adsorption performance was due to various active functional groups (-COOH, -OH, -NH2, etc.) in the IPN hydrogel. The strategy described here opens up a new way for preparing IPN hydrogel. The as-prepared hydrogel exhibits potential application and bright prospects as an adsorbent in wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA