Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 131099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522706

RESUMO

Radical prostatectomy (RP) can cause neurogenic erectile dysfunction (ED), which negatively affects the quality of life of patients with prostate cancer. Currently, there is a dearth of effective therapeutic strategies. Although stem cell therapy is promising, direct cell transplantation to injured cavernous nerves is constrained by poor cell colonization. In this study, poly-L-lactic acid (PLLA)/gelatin electrospun membranes (PGEM) were fabricated to load bone marrow-derived mesenchymal stem cells (BM-MSCs) as a patch to be placed on injured nerves to alleviate ED. This study aimed to establish a promising and innovative approach to mitigate neurogenic ED post-RP and lay the foundation for modifying surgical procedures. Electrospinning and molecular biotechnology were performed in vitro and in vivo, respectively. It was observed that PGEM enhanced the performance of BM-MSCs and Schwann cells due to their excellent mechanical properties and biocompatibility. The transplanted PGEM and loaded BM-MSCs synergistically improved bilateral cavernous nerve injury-related ED and the corresponding histopathological changes. Nevertheless, transplantation of BM-MSCs alone has been verified to be ineffective. Overall, PGEM can serve as an ideal carrier to supply a more suitable survival environment for BM-MSCs and Schwann cells, thereby promoting the recovery of injured cavernous nerves and erectile function.


Assuntos
Disfunção Erétil , Células-Tronco Mesenquimais , Poliésteres , Masculino , Ratos , Animais , Humanos , Disfunção Erétil/etiologia , Disfunção Erétil/terapia , Gelatina/metabolismo , Pênis/inervação , Pênis/patologia , Medula Óssea/patologia , Qualidade de Vida , Ratos Sprague-Dawley , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo
2.
World J Mens Health ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164035

RESUMO

PURPOSE: The poor retention and ambiguous differentiation of stem cells (SCs) within corpus cavernosum (CC) limit the cell application in erectile dysfunction (ED). Herein, the effects and mechanism of microRNA-145 (miR-145) gene modification on modulating the traits and fate of bone marrow-derived mesenchymal stem cells (BMSCs) were investigated. MATERIALS AND METHODS: The effects of miR-145 on cell apoptosis, proliferation, migration, and differentiation were determined by flow cytometry, cell counting kit-8, transwell assays and myogenic induction. Then, the age-related ED rats were recruited to four groups including phosphate buffer saline, BMSC, vector-BMSC, overexpressed-miR-145-BMSC groups. After cell transplantation, the CC were harvested and prepared to demonstrate the retention and differentiation of BMSCs by immunofluorescent staining. Then, the target of miR-145 was verified by quantitative real-time polymerase chain reaction and immunohistochemical. After that, APTO-253, as an inducer of Krüppel-like factor 4 (KLF4), was introduced for rescue experiments in corpus cavernosum smooth muscle cells (CCSMCs) under the co-culture system. RESULTS: In vitro, miR-145 inhibited the migration and apoptosis of BMSCs and promoted the differentiation of BMSCs into smooth muscle-like cells with stronger contractility. In vivo, the amount of 5-ethynyl-2'-deoxyuridine (EdU)+cells within CC was significantly enhanced and maintained in the miR-145 gene modified BMSC group. The EdU/CD31 co-staning was detected, however, no co-staining of EdU/α-actin was observed. Furthermore, miR-145, which secreted from the gene modified BMSCs, dampened the expression of KLF4. However, the effects of miR-145 on CCSMCs could be rescued by APTO-253. CONCLUSIONS: Overall, miR-145 modification prolongs the retention of the transplanted BMSCs within the CC, and this effect might be attributed to the modulation of the miR-145/KLF4 axis. Consequently, our findings offer a promising and innovative strategy to enhance the local stem cell-based treatments.

3.
Andrology ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217461

RESUMO

BACKGROUND: Apoptosis is an important pathologic mechanism of erectile dysfunction after radical prostatectomy. Studies have shown that programmed cell death factor 4 is connected to the modulation of apoptosis in many cells. However, the programmed cell death factor 4 function in the cavernous nerve injury erectile dysfunction is unclear. OBJECTIVE: This investigation aimed to explore the programmed cell death factor 4 function in erectile dysfunction in rats with bilateral cavernous nerve crush. MATERIALS AND METHODS: The experiment used 30 male Sprague Dawley rats (18 months old) that were screened for normal erectile function by the apomorphine test. Ten rats were randomized into Sham and bilateral cavernous nerve crush groups to detect changes in programmed cell death factor 4 expression. The remaining 20 rats were distributed at random to four groups: the Sham group treated by sham surgery, the phosphate-buffered saline group, the lentivirus containing negative control short hairpin RNA group, and the lentivirus containing short hairpin RNA targeting programmed cell death factor 4 group underwent bilateral cavernous nerve crush and were afterward administered intracavernous injections of phosphate-buffered saline, lentivirus containing negative control short hairpin RNA, or lentivirus containing short hairpin RNA targeting programmed cell death factor 4. Electrical stimulation of the cavernous nerve was conducted 2 weeks later for penile erectile function assessment. The cavernous tissue was collected for histological analysis and western blotting. RESULTS: The apoptosis level in rat corpus cavernosum was elevated, and programmed cell death factor 4 expression was increased after bilateral cavernous nerve crush. Knockdown of programmed cell death factor 4 significantly improved erectile function in bilateral cavernous nerve crush rats. Furthermore, lentivirus containing short hairpin RNA targeting programmed cell death factor 4 treatment raised smooth muscle content and attenuated cavernous fibrosis and apoptotic levels. Additionally, programmed cell death factor 4 was found to mediate the PI3K/AKT pathway. DISCUSSION AND CONCLUSION: Elevated programmed cell death factor 4 expression may be an important pathogenetic mechanism for erectile dysfunction after bilateral cavernous nerve crush, and the knockdown of programmed cell death factor 4 enhanced erectile function in 18-month-old rats after cavernous nerve damage. The potential mechanism may be the stimulation of the PI3K/AKT pathway to attenuate the cavernous apoptosis level.

4.
J Cell Physiol ; 239(1): 124-134, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37942832

RESUMO

Studies regarding age-related erectile dysfunction (ED) based on naturally aging models are limited by their high costs, especially for the acquisition of primary cells from the corpus cavernosum. Herein, d-galactose ( d-gal) was employed to accelerate cell senescence, and the underlying mechanism was explored. As predominant functional cells involved in the erectile response, corpus cavernosum smooth muscle cells (CCSMCs) were isolated from 2-month-old rats. Following this, d-gal was introduced to induce cell senescence, which was verified via ß-galactosidase staining. The effects of d-gal on CCSMCs were evaluated by terminal deoxynucleoitidyl transferase dUTP nick-end labeling (TUNEL), immunofluorescence staining, flow cytometry, western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, RNA interference (RNAi) was carried out for rescue experiments. Subsequently, the influence of senescence on the corpus cavernosum was determined via scanning electron microscopy, qRT-PCR, immunohistochemistry, TUNEL, and Masson stainings. The results revealed that the accelerated senescence of CCSMCs was promoted by d-gal. Simultaneously, smooth muscle alpha-actin (alpha-SMA) expression was inhibited, while that of osteopontin (OPN) and Krüppel-like factor 4 (KLF4), as well as fibrotic and apoptotic levels, were elevated. After knocking down KLF4 expression in d-gal-induced CCSMCs by RNAi, the expression level of cellular alpha-SMA increased. Contrastingly, the OPN expression, apoptotic and fibrotic levels declined. In addition, cellular senescence acquired partial remission. Accordingly, in the aged corpus cavernosum, the fibrotic and apoptotic rates were increased, followed by downregulation in the expression of alpha-SMA and the concurrent upregulation in the expression of OPN and KLF4. Overall, our results signaled that d-gal-induced accelerated senescence of CCSMCs could trigger fibrosis, apoptosis and phenotypic switch to the synthetic state, potentially attributed to the upregulation of KLF4 expression, which may be a multipotential therapeutic target of age-related ED.


Assuntos
Disfunção Erétil , Galactose , Miócitos de Músculo Liso , Animais , Masculino , Ratos , Disfunção Erétil/metabolismo , Disfunção Erétil/terapia , Galactose/farmacologia , Galactose/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Pênis , Fenótipo , Ratos Sprague-Dawley , Actinas
5.
J Sex Med ; 20(11): 1274-1284, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37724695

RESUMO

BACKGROUND: Corpus cavernosum (CC) fibrosis significantly contributes to post-radical prostatectomy erectile dysfunction (pRP-ED). Caveolin-1 scaffolding domain (CSD)-derived peptide has gained significant concern as a potent antagonist of tissue fibrosis. However, applying CSD peptide on bilateral cavernous nerve injury (BCNI)-induced rats remains uninvestigated. AIM: The aim was to explore the therapeutic outcome and underlying mechanism of CSD peptide for preventing ED in BCNI rats according to the hypothesis that CSD peptide may exert beneficial effects on erectile tissue and function following BCNI through limiting collagen synthesis in CC smooth muscle cells (CCSMCs) and CC fibrosis. METHODS: After completing a random assignment of male Sprague Dawley rats (10 weeks of age), BCNI rats received either saline or CSD peptide treatment, as opposed to sham-operated rats. The evaluations of erectile function (EF) and succedent collection and histological and molecular biological examinations of penile tissue were accomplished 3 weeks postoperatively. In addition, the fibrotic model of CCSMCs was used to further explore the mechanism of CSD peptide action in vitro. OUTCOMES: The assessments of EF, SMC/collagen ratio, α-smooth muscle actin, caveolin-1 (CAV1), and profibrotic indicators expressions were conducted. RESULTS: BCNI rats exhibited significant decreases in EF, SMC/collagen ratio, α-SMA, and CAV1 levels, and increases in collagen content together with transforming growth factor (TGF)-ß1/Smad2 activity. However, impaired EF, activated CC fibrosis, and Smad2 signaling were attenuated after 3 weeks of CSD peptide treatment in BCNI rats. In vitro, TGF-ß1-induced CCSMCs underwent fibrogenetic transformation characterized by lower expression of CAV1, higher collagen composition, and phosphorylation of Smad2; then, the delivery of CSD peptide could significantly block CCSMC fibrosis by inactivating Smad2 signaling. CLINICAL IMPLICATIONS: Based on available evidence of CSD peptide in the prevention of ED in BCNI rats, this study can aid in the development and clinical application of CSD peptide targeting pRP-ED. STRENGTHS AND LIMITATIONS: This study provides data to suggest that CSD peptide protects against BCNI-induced deleterious alterations in EF and CC tissues. However, the available evidence still does not fully clarify the detailed mechanism of action of CSD peptide. CONCLUSION: Administration of CSD peptide significantly retarded collagen synthesis in CCSMCs, limited CC fibrosis, and prevented ED via confrontation of TGF-ß1/Smad signaling in BCNI rats.


Assuntos
Disfunção Erétil , Traumatismos do Sistema Nervoso , Humanos , Ratos , Masculino , Animais , Caveolina 1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ratos Sprague-Dawley , Pênis , Ereção Peniana/fisiologia , Fibrose , Colágeno/uso terapêutico , Modelos Animais de Doenças
6.
Life Sci ; 325: 121767, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37172816

RESUMO

AIM: Over the years, the cavernous nerve (CN) crushing injury rat model has been frequently used for studying post-radical prostatectomy erectile dysfunction (pRP-ED). However, models based on young and healthy rats reportedly exhibit spontaneous recovery of erectile function. Our investigation purpose was to evaluate bilateral CN crushing (BCNC) effects on erectile function besides penile corpus cavernosum pathology in young and old rats and verify whether the BCNC modeling in old rats is more suitable to mimic pRP-ED. MATERIALS AND METHODS: Thirty young and old male Sprague-Dawley (SD) rats had been divided into three groups in a random manner: sham-operated group (Sham), CN-injured 2-week group (BCNC-2W), and CN-injured 8-week group (BCNC-8W). At 2 and 8 weeks postoperatively, mean arterial pressure (MAP) along with intracavernosal pressure (ICP) had been determined, respectively. Then, the penis was harvested for histopathological studies. KEY FINDING: We found that young rats exhibited erectile function spontaneous recovery 8 weeks following BCNC, while old ones failed to recover erectile function. After BCNC, the abundance of nNOS-positive nerve and smooth muscle were reduced, whereas apoptotic levels and collagen I content increased. These pathological modifications gradually resumed over time in young rats, unlike in old rats. SIGNIFICANCE: Our findings demonstrate that 18-month-old rats do not spontaneously regain erectile function at 8 weeks after BCNC. Therefore, CN-injury ED modeling in 18-month-old rats may be more suitable for studying pRP-ED.


Assuntos
Disfunção Erétil , Traumatismos dos Nervos Periféricos , Humanos , Ratos , Masculino , Animais , Disfunção Erétil/etiologia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Ereção Peniana , Pênis , Prostatectomia/efeitos adversos
7.
Front Immunol ; 14: 1097472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761744

RESUMO

Background: Bladder urothelial carcinoma (BLCA) is associated with high mortality and recurrence. Although mRNA-based vaccines are promising treatment strategies for combating multiple solid cancers, their efficacy against BLCA remains unclear. We aimed to identify potential effective antigens of BLCA for the development of mRNA-based vaccines and screen for immune clusters to select appropriate candidates for vaccination. Methods: Gene expression microarray data and clinical information were retrieved from The Cancer Genome Atlas and GSE32894, respectively. The mRNA splicing patterns were obtained from the SpliceSeq portal. The cBioPortal for Cancer Genomics was used to visualize genetic alteration profiles. Furthermore, nonsense-mediated mRNA decay (NMD) analysis, correlation analysis, consensus clustering analysis, immune cell infiltration analysis, and weighted co-expression network analysis were conducted. Results: Six upregulated and mutated tumor antigens related to NMD, and infiltration of APCs were identified in patients with BLCA, including HP1BP3, OSBPL9, SSH3, ZCCHC8, FANCI, and EIF4A2. The patients were subdivided into two immune clusters (IC1 and IC2) with distinct clinical, cellular and molecular features. Patients in IC1 represented immunologically 'hot' phenotypes, whereas those in IC2 represented immunologically 'cold' phenotypes. Moreover, the survival rate was better in IC2 than in IC1, and the immune landscape of BLCA indicated significant inter-patient heterogeneity. Finally, CALD1, TGFB3, and ANXA6 were identified as key genes of BLCA through WGCNA analysis, and their mRNA expression levels were measured using qRT-PCR. Conclusion: HP1BP3, OSBPL9, SSH3, ZCCHC8, FANCI, and EIF4A2 were identified as potential antigens for developing mRNA-based vaccines against BLCA, and patients in IC2 might benefit more from vaccination.


Assuntos
Vacinas Anticâncer , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Vacinas de mRNA , Humanos , Antígenos de Neoplasias/genética , Carcinoma de Células de Transição/genética , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Vacinas Anticâncer/genética
8.
Int J Biochem Cell Biol ; 156: 106343, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36503049

RESUMO

BACKGROUND: The prevalence of age-associated erectile dysfunction (ED) increases pronouncedly with age. However, the cellular composition and transcriptomic changes of aging penile corpus cavernosum remain largely unclear. METHODS: Herein, we performed single cell sequencing penile corpus cavernosum from five young with normal erectile response and five old rats with ED. RESULTS: Clustering analysis identified 19 cell types, such as fibroblasts, myofibroblasts and immune cells. We next revealed their transcriptomic alterations and investigated novel subpopulations of major cell types. Among them, fibroblasts possessed the largest cell number and showed apparent heterogeneity. By performing single-cell entropy analysis on fibroblasts, we observed the age-associated decrease of entropy, and aged fibroblasts were found to adopt senescent secretory phenotype, as evidenced by the high expression of genes associated with the senescence-associated secretory phenotype (SASP). Finally, we constructed a comprehensive intercellular communication network and highlighted key mediators of crosstalk between fibroblasts and other cell types. CONCLUSIONS: We plotted a cellular atlas of aging cells within penile corpus cavernosum, especially fibroblasts. Our work will deepen the understanding of the heterogeneity among certain cell types within aged penile corpus cavernosum, which will generate positive effects on the future treatment of age-associated ED.


Assuntos
Disfunção Erétil , Masculino , Humanos , Ratos , Animais , Disfunção Erétil/genética , Disfunção Erétil/metabolismo , Pênis/metabolismo , Envelhecimento , Fibroblastos/metabolismo
9.
Oxid Med Cell Longev ; 2022: 6831779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154570

RESUMO

Aging has been deemed the primary factor in erectile dysfunction (ED). Herein, age-related changes in the erectile response and histomorphology were detected, and the relationship between aging and ED was investigated based on gene expression levels. Thirty male Sprague-Dawley (SD) rats were randomly divided into 6 groups, and intracavernous pressure (ICP) and mean arterial pressure (MAP) were measured. Subsequently, the corpus cavernosum (CC) was harvested and prepared for histological examinations of apoptosis, oxidative stress (OS), and fibrosis. Then, the microarray dataset (GSE10804) was analyzed to identify differentially expressed genes (DEGs) in ED progression, and hub genes were selected. In addition, aged CC smooth muscle cells (CCSMCs) were isolated to evaluate the function of the hub gene by siRNA interference, qRT-PCR, immunofluorescence staining, enzyme-linked immunosorbent assay, western blot analysis, CCK-8 assay, EdU staining, and flow cytometry approaches. The ICP/MAP and smooth muscle cell (SMC)/collagen ratios declined with aging, while apoptosis and OS levels increased with aging. The enriched functions and pathways of the DEGs were investigated, and 15 hub genes were identified, among which IGFBP3 was significantly upregulated. The IGFBP3 upregulation was verified in the CC of aging rats. Furthermore, aged CCSMCs were transfected with siRNA to knock down IGFBP3 expression. The viability and proliferation of the CCSMCs increased, while apoptosis, OS, and fibrosis decreased. Our findings demonstrate that the erectile response of SD rats declines in parallel with enhanced CC apoptosis, OS, and fibrosis with aging. Upregulation of IGFBP3 plays an important role; furthermore, downregulation of IGFBP3 improves the viability and proliferation of CCSMCs and alleviates apoptosis, OS, and fibrosis. Thus, IGFBP3 is a potential therapeutic target for age-related ED.


Assuntos
Envelhecimento/metabolismo , Apoptose/genética , Disfunção Erétil/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Estresse Oxidativo/genética , Transdução de Sinais/genética , Regulação para Cima/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/genética , Fibrose , Técnicas de Silenciamento de Genes/métodos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Masculino , Ereção Peniana/genética , Ratos , Ratos Sprague-Dawley , Transfecção
10.
Stem Cell Res Ther ; 10(1): 398, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852516

RESUMO

BACKGROUND: Aging is one of the dominant factors contributing to erectile dysfunction (ED), and effective treatments for age-associated ED are urgently demanded. In this study, the therapeutic efficiency of bone marrow-derived mesenchymal stem cells (BMSCs) overexpressing microRNA-145 (miR-145) was evaluated in ED. METHODS: Sixty male Sprague-Dawley rats (24 months old) were randomly divided into 4 treatment groups (n = 15/group): PBS (control), BMSCs, BMSCs transfected with a blank vector (vector-BMSCs), and BMSCs transfected with a lentivirus overexpressing miR-145 (OE-miR-145-BMSCs). Fourteen days after transplantation of BMSCs, erectile function was evaluated by measuring intra-cavernous pressure (ICP) and mean arterial pressure (MAP). Subsequently, penile erectile tissues were harvested and subjected to Masson staining, qRT-PCR, immunofluorescence staining, dual luciferase assay, and Western blot analysis. RESULTS: Fourteen days after transplantation, the ICP/MAP was 0.79 ± 0.05 in the OE-miR-145-BMSC group, 0.61 ± 0.06 in the BMSC group, 0.57 ± 0.06 in the vector-BMSC group, and 0.3 ± 0.01 in the PBS group. Treatment with OE-miR-145-BMSCs significantly improved ED (P < 0.05), and the treatment increased the smooth muscle content in the penis tissues of ED rats (P < 0.05). In the OE-miR-145-BMSC group, the expression levels of α-SMA, desmin, and SM-MHC were higher than they were in the other ED groups (P < 0.05). In addition, the levels of collagen 1, MMP2, and p-Smad2 in the BMSC-treated group, especially in the OE-miR-145-BMSC group, were lower than those in the control group (P < 0.05). CONCLUSIONS: MicroRNA-145 engineered BMSCs effectively attenuate age-related ED. Transplantation of miR-145-overexpressing BMSCs may provide a promising novel avenue for age-associated ED therapy.


Assuntos
Disfunção Erétil/terapia , Transplante de Células-Tronco Mesenquimais , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Actinas/metabolismo , Animais , Colágeno Tipo I/metabolismo , Desmina/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Disfunção Erétil/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/química , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/química , MicroRNAs/genética , Ereção Peniana/fisiologia , Ratos , Ratos Sprague-Dawley , Proteína Smad2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA