Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Polymers (Basel) ; 16(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891510

RESUMO

In order to reduce the environmental impact of poly(ethylene terephthalate) (PET) plastic waste, supercritical fluids were used to facilitate effective recovery via improved solvent effects. This work focuses on the mechanisms of supercritical CO2 (ScCO2) during the alcoholysis processing of PET using systematic experiments and molecular dynamics (MD) simulations. The results of the alcoholysis experiment indicated that PET chips can be completely depolymerized within only an hour at 473 K assisted with ScCO2 at an optimal molar ratio of CO2/ethanol of 0.2. Random scission of PET dominates the early stage of the depolymerization reaction process, while specific scission dominates the following stage. Correspondingly, molecular dynamics (MD) simulations revealed that the solubilization and self-diffusion properties of ScCO2 facilitate the transportation of alcohol molecules into the bulk phase of PET, which leads to an accelerated diffusion of both oligomers and small molecules in the system. However, the presence of excessive CO2 has a negative impact on depolymerization by weakening the hydrogen bonding between polyester chain segments and ethanol, as well as decreasing the swelling degree of PET. These data provide a deep understanding of PET degradation by alcohols and the enhancement of ScCO2. It should be expected to achieve an efficient and high-yield depolymerization process of wasted polyesters assisted with ScCO2 at a relatively low temperature.

2.
Macromol Rapid Commun ; 45(14): e2400108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38639216

RESUMO

Various acoustic materials are developed to resolve noise pollution problem in many industries. Especially, materials with porous structure are broadly used to absorb sound energy in civil construction and transportation area. Polyurethane (PU) porous materials possess excellent damping properties, good toughness, and well-developed pore structures, which have a broad application prospect in sound absorption field. This work aims to summarize the recent progress of fabrication and structure for PU porous materials in sound absorption application. The sound absorption mechanisms of porous materials are introduced. Different kinds of structure for typical PU porous materials in sound absorption application are covered and highlighted, which include PU foam, modified PU porous materials, aerogel, templated PU, and special PU porous materials. Finally, the development direction and existing problems of PU material in sound absorption application are briefly prospected. It can be expected that porous PU with high sound absorption coefficient can be obtained by using some facile methods. The design and accurate regulation of porous structures or construction of multilayer sound absorption structure is favorably recommended to fulfill the high demand of industrial and commercial applications in the future work.


Assuntos
Poliuretanos , Poliuretanos/química , Porosidade , Som
3.
Nat Commun ; 15(1): 3331, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637491

RESUMO

Ultralight dark photons constitute a well-motivated candidate for dark matter. A coherent electromagnetic wave is expected to be induced by dark photons when coupled with Standard-Model photons through kinetic mixing mechanism, and should be spatially correlated within the de Broglie wavelength of dark photons. Here we report the first search for correlated dark-photon signals using a long-baseline network of 15 atomic magnetometers, which are situated in two separated meter-scale shield rooms with a distance of about 1700 km. Both the network's multiple sensors and the shields large size significantly enhance the expected dark-photon electromagnetic signals, and long-baseline measurements confidently reduce many local noise sources. Using this network, we constrain the kinetic mixing coefficient of dark photon dark matter over the mass range 4.1 feV-2.1 peV, which represents the most stringent constraints derived from any terrestrial experiments operating over the aforementioned mass range. Our prospect indicates that future data releases may go beyond the astrophysical constraints from the cosmic microwave background and the plasma heating.

4.
Sci Adv ; 9(1): eade0353, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608126

RESUMO

Quantum sensing provides sensitive tabletop tools to search for exotic spin-dependent interactions beyond the standard model, which have attracted great attention in theories and experiments. Here, we develop a technique based on Spin Amplifier for Particle PHysIcs REsearch (SAPPHIRE) to resonantly search for exotic interactions, specifically parity-odd spin-spin interactions. The present technique effectively amplifies exotic interaction fields by a factor of about 200 while being insensitive to spurious magnetic fields. Our studies, using such a quantum amplification technique, explore the parity-violation interactions mediated by a new vector boson in the challenging parameter space (force range between 3 mm and 1 km) and set the most stringent constraints on axial-vector electron-neutron couplings, substantially improving previous limits by five orders of magnitude. Moreover, our constraints on axial-vector couplings between nucleons reach into a hitherto unexplored parameter space. The present constraints complement the existing astrophysical and laboratory studies on potential standard model extensions.

5.
NPJ Vaccines ; 7(1): 144, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371432

RESUMO

Since the first outbreak in December 2019, SARS-CoV-2 has been constantly evolving and five variants have been classified as Variant of Concern (VOC) by the World Health Organization (WHO). These VOCs were found to enhance transmission and/or decrease neutralization capabilities of monoclonal antibodies and vaccine-induced antibodies. Here, we successfully designed and produced a recombinant COVID-19 vaccine in CHO cells at a high yield. The vaccine antigen contains four hot spot substitutions, K417N, E484K, N501Y and D614G, based on a prefusion-stabilized spike trimer of SARS-CoV-2 (S-6P) and formulated with an Alum/CpG 7909 dual adjuvant system. Results of immunogenicity studies showed that the variant vaccine elicited robust cross-neutralizing antibody responses against SARS-CoV-2 prototype (Wuhan) strain and all 5 VOCs. It further, stimulated a TH1 (T Helper type 1) cytokine profile and substantial CD4+ T cell responses in BALB/c mice and rhesus macaques were recorded. Protective efficacy of the vaccine candidate was evaluated in hamster and rhesus macaque models of SARS-CoV-2. In Golden Syrian hamsters challenged with Beta or Delta strains, the vaccine candidate reduced the viral loads in nasal turbinates and lung tissues, accompanied by significant weight gain and relieved inflammation in the lungs. In rhesus macaque challenged with prototype SARS-CoV-2, the vaccine candidate decreased viral shedding in throat, anal, blood swabs over time, reduced viral loads of bronchus and lung tissue, and effectively relieved the lung pathological inflammatory response. Together, our data demonstrated the broadly neutralizing activity and efficacy of the variant vaccine against both prototype and current VOCs of SARS-CoV-2, justifying further clinical development.

6.
Chemphyschem ; 23(22): e202200321, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36047977

RESUMO

Recently, research about droplet self-transportation on slippery surfaces has become a hotspot. However, to achieve on/off sliding control during the self-transportation process is still difficult. Herein, we report a magnetic slippery surface, and demonstrate on/off sliding control during the self-transportation of superparamagnetic droplets. The surface is prepared through integrating a substrate that has a gradient magnetic region with a layer of paraffin infused hydrophobic SiO2 nanoparticles. On the surface, a superparamagnetic droplet is pinned at room temperature (about 25 °C), while it can self-transport directionally as the temperature is increased to about 70 °C. When the temperature is cooled down again, the droplet would return to the pinned state, indicating that on/off sliding control during the self-transportation process can be achieved. Furthermore, based on the excellent controllability, controllable coalescence of two droplets from opposite direction is displayed, demonstrating its potential application in numerous areas.


Assuntos
Temperatura Baixa , Dióxido de Silício , Transição de Fase , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos
7.
J Hazard Mater ; 440: 129722, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963083

RESUMO

Over the past years, persulfate (PS) is widely applied due to their high versatility and efficacy in decontamination and sterilization. While treatment of organic chemicals, remediation of soil and groundwater, sludge treatment, disinfection on pathogen microorganisms have been covered by most published reviews, there are no comprehensive and specific reviews on its application to address diverse sustainability challenges, including solid waste treatment, resources recovery and regeneration of ecomaterials. PS applications mainly rely on direct oxidation by PS itself or the reactive sulfate radical (SO4•-) or hydroxyl radical (•OH) from the activation of peroxodisulfate (PDS, S2O82-) or peroxymonosulfate (PMS, HSO5-) in SO4•--based advanced oxidation processes (SO4•--AOPs). From a broader perspective of environmental cleanup and sustainability, this review summarizes the various applications of PS except pollutant decontamination and elaborates the possible reaction mechanisms. Additionally, the differences between PS treatment and conventional technologies are highlighted. Challenges, research needs and future prospect are thus discussed to promote the development of the applications of PS-based oxidation processes in niche environmental fields. In all, this review is a call to pay more attention to the possibilities of PS application in practical resource reutilization and environmental protection except widely reported pollutant degradation.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , Radical Hidroxila/química , Compostos Orgânicos , Oxirredução , Esgotos , Solo , Resíduos Sólidos , Sulfatos/química , Poluentes Químicos da Água/química
8.
Phys Rev Lett ; 129(5): 051801, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960560

RESUMO

Searches for the axion and axionlike particles may hold the key to unlocking some of the deepest puzzles about our Universe, such as dark matter and dark energy. Here, we use the recently demonstrated spin-based amplifier to constrain such hypothetical particles within the well-motivated "axion window" (10 µeV-1 meV) through searching for an exotic dipole-dipole interaction between polarized electron and neutron spins. The key ingredient is the use of hyperpolarized long-lived ^{129}Xe nuclear spins as an amplifier for the pseudomagnetic field generated by the exotic interaction. Using such a spin sensor, we obtain a direct upper bound on the product of coupling constants g_{p}^{e}g_{p}^{n}. The spin-based amplifier technique can be extended to searches for a wide variety of hypothetical particles beyond the standard model.

9.
Vaccine ; 39(48): 7001-7011, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34750014

RESUMO

COVID-19 pandemic has severely impacted the public health and social economy worldwide. A safe, effective, and affordable vaccine against SARS-CoV-2 infections/diseases is urgently needed. We have been developing a recombinant vaccine based on a prefusion-stabilized spike trimer of SARS-CoV-2 and formulated with aluminium hydroxide and CpG 7909. The spike protein was expressed in Chinese hamster ovary (CHO) cells, purified, and prepared as a stable formulation with the dual adjuvant. Immunogenicity studies showed that candidate vaccines elicited robust neutralizing antibody responses and substantial CD4+ T cell responses in both mice and non-human primates. And vaccine-induced neutralizing antibodies persisted at high level for at least 6 months. Challenge studies demonstrated that candidate vaccine reduced the viral loads and inflammation in the lungs of SARS-CoV-2 infected golden Syrian hamsters significantly. In addition, the vaccine-induced antibodies showed cross-neutralization activity against B.1.1.7 and B.1.351 variants. These data suggest candidate vaccine is efficacious in preventing SARS-CoV-2 infections and associated pneumonia, thereby justifying ongoing phase I/II clinical studies in China (NCT04982068 and NCT04990544).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Compostos de Alúmen , Hidróxido de Alumínio , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Células CHO , Cricetinae , Cricetulus , Humanos , Camundongos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
10.
Sci Adv ; 7(47): eabi9535, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788098

RESUMO

Development of new techniques to search for particles beyond the standard model is crucial for understanding the ultraviolet completion of particle physics. Several hypothetical particles are predicted to mediate exotic spin-dependent interactions between standard-model particles that may be accessible to laboratory experiments. However, laboratory searches are mostly conducted for static spin-dependent interactions, with a few experiments addressing spin- and velocity-dependent interactions. Here, we demonstrate a search for these interactions with a spin-based amplifier. Our technique uses hyperpolarized nuclear spins as an amplifier for pseudo-magnetic fields produced by exotic interactions by a factor of more than 100. Using this technique, we establish constraints on the spin- and velocity-dependent interactions between polarized neutrons and unpolarized nucleons for the force range of 0.03 to 100 meters, improving previous constraints by at least two orders of magnitude in partial force range. This technique can be further extended to investigate other exotic spin-dependent interactions.

11.
Diagn Pathol ; 16(1): 105, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34774078

RESUMO

BACKGROUND: Cervical cancer (CC) endangers women's health in the world range. Accumulating studies have revealed the crucial regulatory role of long non-coding RNAs (lncRNAs) in multiple malignancies, including CC. Our study aimed to explore the role of lncRNA double homeobox A pseudogene 8 (DUXAP8) in cervical carcinogenesis. METHODS: Gene expressions in CC were assessed by RT-qPCR. Function experiments and tube formation assays were performed to evaluate the role of DUXAP8 in CC cells. Subcellular fractionation and FISH assays were conducted to determine the subcellular location of DUXAP8. Luciferase reporter, RNA pull down and RIP assays were conducted to investigate the mechanism of DUXAP8. RESULTS: DUXAP8 was notably upregulated in CC cells. Downregulation of DUXAP8 repressed cell malignant behaviors and angiogenesis in CC. Mechanically, DUXAP8 boosted the expression of reticulocalbin-2 (RCN2) through relieving the binding of miR-1297 to RCN2 3'-UTR. Moreover, miR-1297 inhibition and RCN2 overexpression could counteract the inhibitory effects of DUXAP8 knockdown on the malignant phenotypes of CC cells. Besides, enhanced RCN2 expression restored the tumor growth in vivo that was inhibited by DUXAP8 repression. CONCLUSIONS: DUXAP8 promotes malignant behaviors in CC cells via regulating miR-1297/RCN2 axis.


Assuntos
Proteínas de Ligação ao Cálcio/biossíntese , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/patologia , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neoplasias do Colo do Útero/genética
12.
Polymers (Basel) ; 13(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451336

RESUMO

Bubble growth in the polymer extrusion foaming process occurs under a dynamic melt flow. For non-Newtonian fluids, this work successfully coupled the dynamic melt flow simulation with the bubble growth model to realize bubble growth predictions in an extrusion flow. The initial thermophysical properties and dynamic rheological property distribution at the cross section of the die exit were calculated based on the finite element method. It was found that dynamic rheological properties provided a necessary solution for predicting bubble growth during the supercritical CO2 polyethylene terephthalate (PET) extrusion foaming process. The introduction of initial melt stress could effectively inhibit the rapid growth of bubbles and reduce the stable size of bubbles. However, the initial melt stress was ignored in previous work involving bubble growth predictions because it was not available. The simulation results based on the above theoretical model were consistent with the evolution trends of cell morphology and agreed well with the actual experimental results.

13.
Nat Commun ; 12(1): 5077, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426571

RESUMO

In principle, polymerization tends to produce amorphous or poorly crystalline materials. Efficiently producing high-quality single crystals by polymerization in solvent remains as an unsolved issue in chemistry, especially for covalent organic frameworks (COFs) with highly complex structures. To produce µm-sized single crystals, the growth time is prolonged to >15 days, far away from the requirements in practical applications. Here, we find supercritical CO2 (sc-CO2) accelerates single-crystal polymerization by 10,000,000 folds, and produces two-dimensional (2D) COF single crystals with size up to 0.2 mm within 2~5 min. Although it is the fastest single-crystal polymerization, the growth in sc-CO2 leads to not only the largest crystal size of 2D COFs, but also higher quality with improved photoconductivity performance. This work overcomes traditional concept on low efficiency of single-crystal polymerization, and holds great promise for future applications owing to its efficiency, industrial compatibility, environmental friendliness and universality for different crystalline structures and linkage bonds.

14.
Polymers (Basel) ; 13(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066553

RESUMO

Poly(ethylene-co-octene) (POE) elastomers with different copolymer compositions and molecular weight exhibit quite distinctive foaming behaviors and dimensional stability using supercritical carbon dioxide (CO2) as a blowing agent. As the octene content decreases from 16.54% to 4.48% with constant melting index of 1, both the melting point and crystallinity of POE increase, due to the increase in fraction of ethylene homo-polymerization segment. the foaming window of POE moves to a narrow higher temperature zone from 20-50 °C to 90-110 °C under 11 Mpa CO2 pressure, and CO2 solubility as well as CO2 desorption rate decrease, so that the average cell diameter becomes larger. POE foams with higher octene content have more serious shrinkage problem due to lower compression modulus, weaker crystal structure and higher CO2 permeability. As POE molecular weight increases at similar octene content, there is little effect on crystallization and CO2 diffusion behavior, the foaming window becomes wider and cell density increases, mainly owing to higher polymer melt strength, the volume shrinkage ratio of their foams is less than 20% because of similar higher polymer modulus. In addition, when the initiate expansion ratio is over 17 times, POE foams with longer and thinner cell wall structures are more prone to shrinkage and recovery during aging process, due to more bending deformation and less compression deformation.

15.
Langmuir ; 37(19): 5795-5809, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33944565

RESUMO

The relationship between the interfacial rheology of nanoparticle (NP) laden air-brine interfaces and NP adsorption and interparticle interactions is not well understood, particularly as a function of the surface chemistry and salinity. Herein, a nonionic ether diol on the surface of silica NPs provides steric stabilization in bulk brine and at the air-brine interface, whereas a second smaller underlying hydrophobic ligand raises the hydrophobicity to promote NP adsorption. The level of NPs adsorption at steady state is sufficient to produce an interface with a relatively strong elastic dilational modulus E' = dγ/d ln A. However, the interface is ductile with a relatively slow change in E' as the interfacial area is varied over a wide range during compression and expansion. In contrast, for silica NPs stabilized with only a single hydrophobic ligand, the interfaces are often more fragile and may fracture with small changes in area. The presence of concentrated divalent cations improves E' and ductility by screening electrostatic dipolar repulsion and strengthening the attractive forces between nanoparticles. The ability to tune the interfacial rheology with NP surface chemistry is of great interest for designing more stable gas/brine foams.

16.
Langmuir ; 37(17): 5408-5423, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33881323

RESUMO

The design of surface chemistries on nanoparticles (NPs) to stabilize gas/brine foams with concentrated electrolytes, especially with divalent ions, has been elusive. Herein, we tune the surface of 20 nm silica NPs by grafting a hydrophilic and a hydrophobic ligand to achieve two seemingly contradictory goals of colloidal stability in brine and high NP adsorption to yield a viscoelastic gas-brine interface. Highly stable nitrogen/water (N2/brine) foams are formed with CaCl2 concentrations up to 2% from 25 to 90 °C. The viscoelastic gas-brine interface retards drainage of the lamellae, and the high dilational elasticity arrests coarsening (Ostwald ripening) with no observable change in foam bubble size over 48 h. The ability to design NP-laden viscoelastic interfaces for highly stable foams, even with high divalent ion concentrations, is of fundamental mechanistic interest for a broad range of foam applications and in particular foams for CO2 sequestration and enhanced oil recovery.

17.
Am J Emerg Med ; 38(10): 2101-2109, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33184025

RESUMO

INTRODUCTION: Influenza has been linked to the crowding in emergency departments (ED) across the world. The impact of the Coronavirus Disease 2019 (COVID-19) pandemic on China EDs has been quite different from those during past influenza outbreaks. Our objective was to determine if COVID-19 changed ED visit disease severity during the pandemic. METHODS: This was a retrospective cross sectional study conducted in Nanjing, China. We captured ED visit data from 28 hospitals. We then compared visit numbers from October 2019 to February 2020 for a month-to-month analysis and every February from 2017 to 2020 for a year-to-year analysis. Inter-group chi-square test and time series trend tests were performed to compare visit numbers. The primary outcome was the proportion of severe disease visits in the EDs. RESULTS: Through February 29 th 2020, there were 93 laboratory-confirmed COVID-19 patients in Nanjing, of which 40 cases (43.01%) were first seen in the ED. The total number of ED visits in Nanjing in February 2020, were dramatically decreased (n = 99,949) in compared to January 2020 (n = 313,125) and February 2019 (n = 262,503). Except for poisoning, the severe diseases in EDs all decreased in absolute number, but increased in proportion both in year-to-year and month-to-month analyses. This increase in proportional ED disease severity was greater in higher-level referral hospitals when compared year by year. CONCLUSION: The COVID-19 outbreak has been associated with decreases in ED visits in Nanjing, China, but increases in the proportion of severe ED visits.


Assuntos
COVID-19/epidemiologia , Serviço Hospitalar de Emergência/estatística & dados numéricos , Índice de Gravidade de Doença , China/epidemiologia , Estado Terminal/epidemiologia , Estudos Transversais , Humanos , Pandemias , Estudos Retrospectivos , SARS-CoV-2
18.
Oncol Rep ; 44(5): 1997-2008, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33000266

RESUMO

Curcumin is the main component of the Chinese herbal plant turmeric, which has been demonstrated to possess antitumor and other pharmacological properties. The aim of the present study was to investigate the effects of curcumin on the viability, migration and apoptosis of human colorectal carcinoma HCT­116 cells, and to explore the underlying molecular mechanisms. In addition, it was investigated whether the antitumor effect of curcumin on HCT­116 cells could match that of the chemotherapeutic drug 5­fluorouracil (5­FU). HCT­116 cells were treated with curcumin (10, 20 and 30 µM) and 5­FU (500 µM), and cell viability and proliferation were detected by Cell Counting Kit­8 and colony formation assays, respectively. The migration and invasion of treated cells were determined using Transwell and carboxyfluorescein succinimidyl amino ester fluorescent labeling assays. Cell cycle distribution and apoptosis rates were detected by flow cytometry. Furthermore, cell morphology changes associated with apoptosis were observed by fluorescence microscopy with acridine orange/ethidium bromide dual staining. To investigate the possible underlying molecular mechanisms, the gene and protein levels of Fas, Fas­associated via death domain (FADD), caspase­8, caspase­3, matrix metalloproteinase (MMP)­9, nuclear factor (NF)­κB, E­cadherin and claudin­3 were detected using quantitative PCR analysis, zymography and western blotting. The results revealed that curcumin markedly inhibited the viability and proliferation of HCT­116 cells in a dose­ and time­dependent manner. The migration, aggregation and invasion of HCT­116 cells into the lungs of mice were decreased by curcumin treatment in a dose­dependent manner. S­phase arrest and gradually increased apoptotic rates of HCT­116 cells were observed with increasing curcumin concentrations. Additionally, the mRNA and protein levels of apoptosis­associated proteins (Fas, FADD, caspase­8 and caspase­3) and E­cadherin in HCT­116 cells were upregulated following treatment with curcumin in a dose­dependent manner. By contrast, the expression of migration­associated proteins, including MMP­9, NF­κB and claudin­3, was downregulated with increasing curcumin concentrations. These data suggested that the inhibitory effect of curcumin on HCT­116 cells may match that of 5­FU. Therefore, curcumin induced cell apoptosis and inhibited tumor cell metastasis by regulating the NF­κB signaling pathway, and its therapeutic effect may be comparable to that of 5­FU.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Curcumina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Curcumina/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Células HCT116 , Humanos , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Manag Res ; 12: 9999-10010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116856

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were reported to be related to the development of ovarian cancer (OC). In this study, the functional mechanisms of lncRNA metastasis associated with lung adenocarcinoma transcript 1 (MALAT1) and microRNA-1271-5p (miR-1271-5p) were explored in OC. METHODS: The level of MALAT1, miR-1271-5p, or E2F transcription factor 5 (E2F5) was detected by qRT-PCR. MTT assay, flow cytometry analysis and transwell migration and invasion assays were performed to determine cell proliferation, apoptosis, migration and invasion, respectively. E2F5 protein expression was detected by Western blot. The interaction between miR-1271-5p and MALAT1 or E2F transcription factor 5 (E2F5) was confirmed by the dual-luciferase reporter assay. RESULTS: MALAT1 and E2F5 level were increased, while miR-1271-5p level was decreased in cisplatin (DDP)-resistant OC tissues and cells. MALAT1 knockdown or miR-1271-5p upregulation decreased IC50 of cisplatin, and inhibited cell proliferation, migration, invasion, and facilitated cell apoptosis in DDP-resistant OC cells. Moreover, MALAT1 sponged miR-1271-5p to upregulate E2F5 expression. Besides, MALAT1 knockdown decreased DDP resistance, inhibited cell proliferation, migration, invasion, and promoted cell apoptosis by sponging miR-1271-5p to downregulate E2F5 expression in DDP-resistant OC cell. CONCLUSION: We demonstrated that MALAT1 mediated DDP-resistant OC development through miR-1271-5p/E2F5 axis, providing the theoretical basis for OC therapy.

20.
Oxid Med Cell Longev ; 2019: 9480945, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737179

RESUMO

Indigo naturalis (also known as Qing-dai, or QD), a traditional Chinese medicine, has been widely used as an anticolitis regimen in the clinical practice of Chinese medicine. However, the precise mechanisms behind its efficacy remain unknown. We investigated the protective effects and associated molecular mechanisms of QD in DSS-induced colitis in mice. We found that QD administration attenuated DSS-induced colon shortening, tissue damage, and the disease activity index during the onset of colitis. Moreover, QD administration significantly suppressed colonic MPO activity and increased the activities of colonic T-SOD, CAT, and GSH-Px, as well the expression of p-AMPK and Nrf-2 in colon tissues of colitic mice. In addition, QD was capable of reducing the colonic Th1 and Th17 cell cytokines, the frequencies of Th1 and Th17 cells, and the phosphorylation of p-STAT1 and p-STAT3 in the mesenteric lymph nodes of colitic mice. An in vitro assay showed that QD significantly suppressed the differentiation of Th1 and Th17 cells. These findings suggest that QD has the potential to alleviate experimental colitis by suppressing colonic oxidative stress and restraining colonic Th1/Th17 responses, which are associated with activating AMPK/Nrf-2 signals and inhibiting STAT1/STAT3 signals, respectively. These findings also support QD as an effective regimen in the treatment of IBD.


Assuntos
Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Células Th1/imunologia , Células Th17/imunologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Colite/induzido quimicamente , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Humanos , Imunidade Celular , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA