Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744732

RESUMO

PURPOSE: This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors. METHODS: Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs. RESULTS: IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64. CONCLUSIONS: This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.

2.
Adv Healthc Mater ; 13(5): e2302488, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050839

RESUMO

Nowadays, ≈90% of new drug candidates under development are poorly bioavailable due to their low solubility and/or permeability. Herein, a natural liquid small molecule trans-anethole (TA) is introduced into the drug-polymer system lurasidone (LUS)-poly (1-vinylpyrrolidone-co-vinyl acetate) (VA64), notably improving the compatibility of components for the successful preparation of amorphous solid dispersion (ASD) and facilitating the formation of self-emulsifying drug delivery system (SEDDS) during dissolution. LUS-TA-VA64 ASD shows enhanced supersaturation with a long maintenance time of at least 24 h over pure LUS. The strong non-covalent force between VA64 (as emulsifier) and TA (as oil phase)/ water promotes the self-assembly of submicron emulsion and ensures its stability for at least 10 h. Compared to the commercial salt form of LUS, the ASD shows twofold increase in peak plasma concentration (Cmax ) and area under plasma concentration-time profiles (AUC), 1.5-fold increase in peak time (Tmax ), and twofold decrease in AUC-based coefficient of variation (CV) (59%→26%) after a single oral dose to a rabbit.


Assuntos
Sistemas de Liberação de Medicamentos , Cloridrato de Lurasidona , Animais , Coelhos , Emulsões , Solubilidade , Polímeros , Liberação Controlada de Fármacos
3.
Eur J Pharm Biopharm ; 189: 56-67, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301300

RESUMO

Amorphous solid dispersions (ASDs) with solubility advantage are suffering from the recrystallization risk and subsequent reduced dissolution triggered by high hygroscopicity of hydrophilic polymers and the supersaturation of ASD solutions. To address these issues, in this study, small-molecule additives (SMAs) in the Generally Recognized as Safe (GRAS) list were introduced into drug-polymer ASD. For the first time, we systematically revealed the intrinsic correlation between SMAs and properties of ASDs at the molecular level and constructed a prediction system for the regulation of properties of ASDs. The types and dosages of SMAs were screened by Hansen solubility and Flory-Huggins interaction parameters, as well as differential scanning calorimetry. X-ray photoelectron spectroscopy and adsorption energy (Eabs) calculation showed that the surface group distribution of ASDs and Eabs between ASD system and solvent were vital factors affecting the hygroscopicity and then stability. The radial distribution function revealed that interactions between components were proposed to be the critical factor for the dissolution performance. Based on this, a prediction system for regulating the properties of ASDs was successfully constructed mainly via molecular dynamics simulations and simple solid-state characterizations, and then validated by cases, which efficiently reduces the time and economic cost of pre-screening ASDs.


Assuntos
Tecnologia de Extrusão por Fusão a Quente , Polímeros , Solubilidade , Polímeros/química , Solventes , Interações Hidrofóbicas e Hidrofílicas , Composição de Medicamentos/métodos
4.
Mol Pharm ; 20(7): 3412-3426, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37253085

RESUMO

Cocrystal (CC) and coamorphous (CM) techniques have become green technologies to improve the solubility and bioavailability of water-soluble drugs. In this study, hot-melt extrusion (HME) was employed to produce CC and CM formulations of indomethacin (IMC) and nicotinamide (NIC) due to its advantages like solvent-free and large-scale manufacturing. Interestingly, for the first time, IMC-NIC CC and CM were selectively prepared depending on the barrel temperatures of HME at a constant screw speed of 20 rpm and a feed rate of 1.0 g/min. IMC-NIC CC was obtained at 105-120 °C, IMC-NIC CM was produced at 125-150 °C, and the mixture of CC and CM was obtained between 120 and 125 °C (like a door switch of CC and CM). SS NMR combined with RDF and Ebind calculations revealed the formation mechanisms of CC and CM, where strong interactions between heteromeric molecules formed at lower temperatures favored periodic molecular organization of CC, whereas discrete and weak interactions formed at higher temperatures promoted disordered molecular arrangement of CM. Additionally, IMC-NIC CC and CM showed enhanced dissolution and stability over crystalline/amorphous IMC. This study provides an easy-to-operate and environmentally friendly strategy for the flexible regulation of CC and CM formulations with different properties through modulation of the barrel temperature of HME.


Assuntos
Indometacina , Niacinamida , Indometacina/química , Niacinamida/química , Composição de Medicamentos/métodos , Solubilidade , Solventes/química , Temperatura Alta
5.
J Mater Chem B ; 11(4): 865-878, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36594907

RESUMO

Drug resistance caused by facultative intracellular bacteria such as Salmonella typhimurium (S. typhimurium) is still a tough challenge. Bacteria phagocytosed by macrophages have evolved a variety of mechanisms to defend against host attack, and the poor entry of antibiotics into infected macrophages is conducive to the survival of intracellular bacteria. In this report, we prepared a quasi-opsonized chloramphenicol (Chl)-loaded micellar system (B-mLBP-M/Chl) assembled by a bacterial lipase-sensitive polymer with a conjugate of lipopolysaccharide-binding protein (LBP) analog and biotin (B) as a ligand, which could eliminate drug-resistant S. typhimurium with quasi-opsonization via 3 steps: (i) target and release antibiotics on bacteria lipase, (ii) opsonize S. typhimurium to be digested by the macrophage, and (iii) activate the macrophage for fighting. The B-mLBP-M/Chl could target bacterial LPS through mLBP by simulating the N-terminal sequence of native LBP, exhibiting a high ability to target the localized infection site in mice. It could also activate the phagocytosis of macrophages via coupled biotin, cooperating with antibiotics and effectively improving the survival of mice with little pathological damage to tissues. Moreover, compared with native opsonin, B-mLBP does not cause an excessive inflammatory response and could recover homeostasis after exerting the quasi-opsonization by regulating the levels of pro-inflammatory cytokines and anti-inflammatory cytokines. With a universal target site for Gram-negative bacteria and macrophage activation, this B-mLBP-M/Chl could be applied to other bacterial infections in the future. In particular, this analog may also serve as a useful template to design safe artificial opsonin, which could be a ligand for drug delivery systems or prodrugs.


Assuntos
Infecções Bacterianas , Proteínas Opsonizantes , Animais , Camundongos , Proteínas Opsonizantes/farmacologia , Micelas , Biotina/farmacologia , Ligantes , Macrófagos , Citocinas , Antibacterianos/farmacologia
6.
J Control Release ; 354: 489-502, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646287

RESUMO

In our previous study, the coamorphous formulation of lurasidone hydrochloride (LH) with saccharin (SAC) showed significantly enhanced dissolution and physical stability compared to crystalline/amorphous LH. However, the coamorphous system is still in amorphous state, and has the tendency to recrystallization, which will in turn result in the loss of above advantages. In this study, the crystallization kinetics under isothermal and non-isothermal conditions was investigated. Compared to amorphous LH, coamorphous LH-SAC showed 68.3-361.2 and 2.6-6.1 times lower crystallization rates in glassy state and supercooled liquid state, respectively. After co-amorphization, the addition of SAC changed the crystallization mechanism of amorphous LH from nucleation-controlled to diffusion-controlled manner. Amorphous LH followed the site-saturated nucleation, whereas the coamorphous system exhibited a fixed number of nuclei. The non-isothermal crystallization indicated amorphous LH and coamorphous LH-SAC showed two-dimensional (JMAEK 2) and three-dimensional (JMAEK 3) growth of nuclei, respectively. Furthermore, coamorphous LH-SAC exhibited higher molecular mobility and dynamic fragility (mD) than amorphous LH, which is kinetically unfavorable for its physical stability. However, from thermodynamic perspective, coamorphous LH-SAC had a higher configurational entropy, i.e., a higher entropy barrier for crystallization, which is beneficial to hinder its crystallization. Therefore, it was concluded that the higher configurational entropy rather than the molecular mobility was proposed to be responsible for its improved stability. In addition, molecular dynamics simulations with miscibility, radial distribution function and binding energy calculations suggested coamorphous components exhibited good miscibility and strong intermolecular interactions, which was also conductive to the enhancement in its stability. This study offers an in-depth understanding about the effect of the coformer on the crystallization kinetics of coamorphous systems, and points out the important contribution of the configurational entropy in stabilizing the coamorphous systems.


Assuntos
Cloridrato de Lurasidona , Simulação de Dinâmica Molecular , Cristalização/métodos , Solubilidade , Estabilidade de Medicamentos , Varredura Diferencial de Calorimetria
7.
Int J Pharm ; 624: 122060, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35905932

RESUMO

Lornoxicam (LOR), a BCS II nonsteroidal anti-inflammatory drug, has been clinically utilized for moderate to severe acute pain management. However, it has poor water solubility and insufficient tabletability, leading to erratic absorption and challenge in tablet processability. This study reported a novel solid state of LOR (i.e., LOR sodium chelate monohydrate, LOR-Na·H2O) with significantly improved solubility, dissolution rate and tabletability. The prepared chelate (CCDC No.: 2125157) contains LOR-, Na+, and H2O in a molar ratio of 1:1:1, where Na+ ions bridged with O(5) of amide group, and N(2) of pyridine group on LOR-, as well as O(4) on H2O through coordination bonds. LOR-Na·H2O displayed a superior dissolution rate (5 âˆ¼ 465 folds) than commercial LOR due to its increased wettability (contact angle: 74.5° vs 85.6°) and lower solvation free energy (∼2-fold). In addition, the significant improvement in tabletability was caused by high plasticity and deformability, which was attributed to its special interlayer gliding with weak bonding interactions across layers but strong coordination bonding interactions within layers. The novel LOR-Na·H2O with significantly enhanced pharmaceutical performance offers a promising strategy for further product development.


Assuntos
Piroxicam , Sódio , Piroxicam/análogos & derivados , Piroxicam/química , Solubilidade , Comprimidos
8.
Eur J Pharm Biopharm ; 177: 249-259, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35870760

RESUMO

Amorphous indomethacin (IMC) prepared under different thermal procedures via melt quenching method showed significantly different dissolution behaviors. This study aims to investigate the influence of thermal procedures on the formation of IMC polyamorphism and to explore the mechanism for their different dissolution behaviors. Amorphous IMC samples were prepared by melting crystalline IMC under a series of temperatures (160-195 °C), respectively, followed by quenching in liquid nitrogen. Samples obtained under 170 °C exhibited bi-halo shapes at ∼15° and ∼26° (2θ), while the ones above 175 °C showed a single halo at ∼21° (2θ), suggesting amorphous IMC prepared under different thermal procedures probably have different local molecular arrangements. In comparison to crystalline IMC, amorphous IMC obtained under 170 °C showed significantly higher dissolution profiles with good dispersibility in aqueous medium, however, all amorphous IMC samples prepared above 175 °C demonstrated much lower dissolution with significant gelation, which seemed like a gelation switch existed for polyamorphic IMC when the preparation temperature was between 170 and 175 °C. Based on physicochemical characterizations, amorphous IMC prepared under 170 °C had higher surface free energy, more surficial hydrophilic groups and better wettability than the ones made above 175 °C. Molecular dynamics simulations revealed that the amorphous samples prepared below 170 °C had similar binding energy values in the range of 310.045-325.479 kcal/mol, while those prepared above 175 °C were significantly lower within 212.193-235.073 kcal/mol. Such binding energy difference might be responsible for their different local molecular arrangements after different thermal procedures. The current study deeply reminds us that the thermal procedure of preparation methods may significantly affect the physicochemical properties of amorphous materials, which should be paid special attention to the polymorphic selection during pharmaceutical development.


Assuntos
Indometacina , Simulação de Dinâmica Molecular , Cristalização/métodos , Interações Hidrofóbicas e Hidrofílicas , Indometacina/química , Solubilidade , Temperatura , Difração de Raios X
9.
Int J Nanomedicine ; 16: 6141-6156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511911

RESUMO

At present, some bacteria have developed significant resistance to almost all available antibiotics. One of the reasons that cannot be ignored is long-term exposure of bacteria to the sub-minimum inhibitory concentration (MIC) of antibiotics. Therefore, it is necessary to develop a targeted antibiotic delivery system to improve drug delivery behavior, in order to delay the generation of bacterial drug resistance. In recent years, with the continuous development of nanotechnology, various types of nanocarriers that respond to the infection microenvironment, targeting specific bacterial targets, and targeting infected cells, and so on, are gradually being used in the delivery of antibacterial agents to increase the concentration of drugs at the site of infection and reduce the side effects of drugs in normal tissues. Here, this article describes in detail the latest research progress on nanocarriers for antimicrobial, and commonly used targeted antimicrobial strategies. The advantages of the combination of nanotechnology and targeting strategies in combating bacterial infections are highlighted in this review, and the upcoming opportunities and remaining challenges in this field are rationally prospected.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Farmacorresistência Bacteriana , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA