Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 9(1): 687, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369298

RESUMO

Surface Soil Moisture (SSM) information is needed for agricultural water resource management, hydrology and climate analysis applications. Temporal and spatial sampling by the space-borne instruments designed to retrieve SSM is, however, limited by the orbit and sensors of the satellites. We produced a Global Daily-scale Soil Moisture Fusion Dataset (GDSMFD) with 25 km spatial resolution (2011~2018) by applying the Triple Collocation Analysis (TCA) and Linear Weight Fusion (LWF) methods. Using five metrics, the GDSMFD was evaluated against in-situ soil moisture measurements from ten ground observation networks and compared with the prefusion SSM products. Results indicated that the GDSMFD was consistent with in-situ soil moisture measurements, the minimum of root mean square error values of GDSMFD was only 0.036 cm3/cm3. Moreover, the GDSMFD had a good global coverage with mean Global Coverage Fraction (GCF) of 0.672 and the maximum GCF of 0.837. GDSMFD performed well in accuracy and global coverage fraction, making it valuable in applications to the global climate change monitoring, drought monitoring and hydrological monitoring.

2.
Materials (Basel) ; 15(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955253

RESUMO

The large production and low comprehensive utilization rate of solid waste from coal power base affects the efficient and coordinated development of regional resources and the ecological environment. In order to promote utilization of solid waste from coal power base, coal gangue, fly ash, and gasification slag are mixed as raw materials to prepare filling materials, and a study on the evolution law of the mechanical properties of coal-based solid waste filling body is systematically carried out. After clarifying the physical and chemical properties of the filling materials, the Box-Behnken experimental design method was used to study the effects of slurry mass fraction, coal gangue, fly ash, and gasification slag on the strength of the filling body based on the response surface-satisfaction function coupling theory. Furthermore, a multivariate nonlinear regression model was constructed for the strength of the filling body at different maintenance ages. Based on the analysis of variance (ANOVA) and the response surface function, the impact mechanism of influencing factors and their interaction on the strength of filler were revealed. The results show that the strength of the filler is affected by single factors and interactions between factors. The interaction of slurry mass fraction and gangue dosing has a significant effect on the strength of the filler in the early stage; the interaction of fly ash and gangue dosing has a significant effect on the strength of the filler in the middle stage; the interaction of slurry mass fraction and gasification slag dosing has a significant effect on the strength of the filler in the final stage. The mixed filling materials significantly affect the strength of the filler as the maintenance time is extended. The mixed filling materials are extensively interlaced with the hydration products, calcium alumina, and calcium silicate hydrate (C-S-H) gel, forming a stable three-dimensional spatial support system as the maintenance time increases. The best ratio to meet the requirements of mine filling slurry pipeline transportation and filling body strength was selected using the regression model and the proposed economic function of filling material.

3.
Sensors (Basel) ; 17(8)2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28783059

RESUMO

We present in this paper a polynomial fitting method applicable to segments of footprints measured by the Geoscience Laser Altimeter System (GLAS) to estimate glacier thickness change. Our modification makes the method applicable to complex topography, such as a large mountain glacier. After a full analysis of the planar fitting method to characterize errors of estimates due to complex topography, we developed an improved fitting method by adjusting a binary polynomial surface to local topography. The improved method and the planar fitting method were tested on the accumulation areas of the Naimona'nyi glacier and Yanong glacier on along-track facets with lengths of 1000 m, 1500 m, 2000 m, and 2500 m, respectively. The results show that the improved method gives more reliable estimates of changes in elevation than planar fitting. The improved method was also tested on Guliya glacier with a large and relatively flat area and the Chasku Muba glacier with very complex topography. The results in these test sites demonstrate that the improved method can give estimates of glacier thickness change on glaciers with a large area and a complex topography. Additionally, the improved method based on GLAS Data and Shuttle Radar Topography Mission-Digital Elevation Model (SRTM-DEM) can give estimates of glacier thickness change from 2000 to 2008/2009, since it takes the 2000 SRTM-DEM as a reference, which is a longer period than 2004 to 2008/2009, when using the GLAS data only and the planar fitting method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA