Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(4): ar54, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446615

RESUMO

Proper formation of the hippocampus is crucial for the brain to execute memory and learning functions. However, many questions remain regarding how pyramidal neurons (PNs) of the hippocampus mature and precisely position. Here we revealed that Setd2, the methyltransferase for histone 3 lysine 36 trimethylation (H3K36me3), is essential for the precise localization and maturation of PNs in the hippocampal CA1. The ablation of Setd2 in neural progenitors leads to irregular lamination of the CA1 and increased numbers of PNs in the stratum oriens. Setd2 deletion in postmitotic neurons causes mislocalization and immaturity of CA1 PNs. Transcriptome analyses revealed that SETD2 maintains the expressions of clustered protocadherin (cPcdh) genes. Together, Setd2 is required for proper hippocampal lamination and maturation of CA1 PNs.


Assuntos
Hipocampo , Histonas , Histona Metiltransferases/metabolismo , Histonas/metabolismo , Hipocampo/metabolismo
2.
Cell Rep ; 42(12): 113496, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995181

RESUMO

Appropriate histone modifications emerge as essential cell fate regulators of neuronal identities across neocortical areas and layers. Here we showed that NSD1, the methyltransferase for di-methylated lysine 36 of histone H3 (H3K36me2), controls both area and layer identities of the neocortex. Nsd1-ablated neocortex showed an area shift of all four primary functional regions and aberrant wiring of cortico-thalamic-cortical projections. Nsd1 conditional knockout mice displayed defects in spatial memory, motor learning, and coordination, resembling patients with the Sotos syndrome carrying NSD1 mutations. On Nsd1 loss, superficial-layer pyramidal neurons (PNs) progressively mis-expressed markers for deep-layer PNs, and PNs remained immature both morphologically and electrophysiologically. Loss of Nsd1 in postmitotic PNs causes genome-wide loss of H3K36me2 and re-distribution of DNA methylation, which accounts for diminished expression of neocortical layer specifiers but ectopic expression of non-neural genes. Together, H3K36me2 mediated by NSD1 is required for the establishment and maintenance of region- and layer-specific neocortical identities.


Assuntos
Histonas , Síndrome de Sotos , Animais , Humanos , Camundongos , Metilação de DNA , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Mutação , Processamento de Proteína Pós-Traducional , Síndrome de Sotos/genética
3.
Bioorg Chem ; 127: 105898, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35792317

RESUMO

The elevation of epoxy-fatty acids through inhibition of soluble epoxide hydrolase (sEH) is efficient for the treatment of inflammatory and pain-related diseases. Herein, we reported the discovery of a series of benzamide derivatives containing urea moiety as sEH inhibitors. Intensive structural modifications led to the identification of compound A34 as a potent sEH inhibitor with good physicochemical properties. Molecular docking revealed an additional hydrogen-bonding interaction between the unique amide scaffold and Phe497, contributing to sEH inhibition potency enhancement. Compound A34 exhibited outstanding inhibitory activity against human sEH, with an IC50 value of 0.04 ± 0.01 nM and a Ki value of 0.2 ± 0.1 nM. It also showed moderate systemic drug exposure and oral bioavailability in vivo metabolism studies. In carrageenan-induced inflammatory pain rat model, compound A34 exhibited a better therapeutic effect compared to t-AUCB and Celecoxib. Metabolism studies in vivo together with an inflammatory pain evaluation suggest that A34 may be a viable lead compound for the development of highly potent sEH inhibitors.


Assuntos
Inibidores Enzimáticos , Epóxido Hidrolases , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Dor , Ratos , Solubilidade , Ureia/farmacologia
4.
Bioorg Med Chem Lett ; 70: 128805, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35598794

RESUMO

The pharmacological inhibition of soluble epoxide hydrolase (sEH) was shown to reduce inflammation and pain. Herein, we described a series of newly synthesized sEH inhibitors with the trident-shaped skeleton. Intensive structural modifications led to the identification of compound B15 as a potent sEH inhibitor with an IC50 value of 0.03 ± 0.01 nM. Furthermore, compound B15 showed satisfactory metabolic stability in human liver microsomes with a half-time of 197 min. In carrageenan-induced inflammatory pain rat model, compound B15 exhibited a better therapeutic effect compared to t-AUCB and Celecoxib, which demonstrated the proof of potential as anti-inflammatory agents for pain relief.


Assuntos
Inibidores Enzimáticos , Epóxido Hidrolases , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Inibidores Enzimáticos/química , Dor , Ratos , Relação Estrutura-Atividade , Ureia/farmacologia , Ureia/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA