Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Med ; 29(1): 104, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528397

RESUMO

BACKGROUND: Macrophage-like transformation of vascular smooth muscle cells (VSMCs) is a risk factor of atherosclerosis (AS) progression. Transcription factor homeobox A1 (HOXA1) plays functional roles in differentiation and development. This study aims to explore the role of HOXA1 in VSMC transformation, thereby providing evidence for the potential mechanism of AS pathogenesis. METHODS: High fat diet (HFD)-fed apolipoprotein E knockout (ApoE-/-) mice were applied as an in vivo model to imitate AS, while 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POV-PC)-treated VSMCs were applied as an in vitro model. Recombinant adeno-associated-virus-1 (AAV-1) vectors that express short-hairpin RNAs targeting HOXA1, herein referred as AAV1-shHOXA1, were generated for the loss-of-function experiments throughout the study. RESULTS: In the aortic root of AS mice, lipid deposition was severer and HOXA1 expression was higher than the wide-type mice fed with normal diet or HFD. Silencing of HOXA1 inhibited the AS-induced weight gain, inflammatory response, serum and liver lipid metabolism disorder and atherosclerotic plaque formation. Besides, lesions from AS mice with HOXA1 knockdown showed less trans-differentiation of VSMCs to macrophage-like cells, along with a suppression of krüppel-like factor 4 (KLF4) and nuclear factor (NF)-κB RelA (p65) expression. In vitro experiments consistently confirmed that HOXA1 knockdown suppressed lipid accumulation, VSMC-to-macrophage phenotypic switch and inflammation in POV-PC-treated VSMCs. Mechanism investigations further illustrated that HOXA1 transcriptionally activated RelA and KLF4 to participate in the pathological manifestations of VSMCs. CONCLUSIONS: HOXA1 participates in AS progression by regulating VSMCs plasticity via regulation of NF-κB p65 and KLF4. HOXA1 has the potential to be a biomarker or therapeutic target for AS.


Assuntos
Aterosclerose , Fator 4 Semelhante a Kruppel , Camundongos , Animais , NF-kappa B/metabolismo , Músculo Liso Vascular/metabolismo , Camundongos Knockout , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos/metabolismo , Lipídeos , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
2.
Arterioscler Thromb Vasc Biol ; 42(7): 868-883, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35510552

RESUMO

BACKGROUND: Arteriovenous fistulae (AVF) are the gold standard for vascular access for hemodialysis. Although the vein must thicken and dilate for successful hemodialysis, excessive wall thickness leads to stenosis causing AVF failure. Since TGF-ß (transforming growth factor-beta) regulates ECM (extracellular matrix) deposition and smooth muscle cell (SMC) proliferation-critical components of wall thickness-we hypothesized that disruption of TGF-ß signaling prevents excessive wall thickening during venous remodeling. METHODS: A mouse aortocaval fistula model was used. SB431542-an inhibitor of TGF-ß receptor I-was encapsulated in nanoparticles and applied to the AVF adventitia in C57BL/6J mice. Alternatively, AVFs were created in mice with conditional disruption of TGF-ß receptors in either SMCs or endothelial cells. Doppler ultrasound was performed serially to confirm patency and to measure vessel diameters. AVFs were harvested at predetermined time points for histological and immunofluorescence analyses. RESULTS: Inhibition of TGF-ß signaling with SB431542-containing nanoparticles significantly reduced p-Smad2-positive cells in the AVF wall during the early maturation phase (days 7-21) and was associated with decreased AVF wall thickness that showed both decreased collagen density and decreased SMC proliferation. SMC-specific TGF-ß signaling disruption decreased collagen density but not SMC proliferation or wall thickness. Endothelial cell-specific TGF-ß signaling disruption decreased both collagen density and SMC proliferation in the AVF wall and was associated with reduced wall thickness, increased outward remodeling, and improved AVF patency. CONCLUSIONS: Endothelial cell-targeted TGF-ß inhibition may be a translational strategy to improve AVF patency.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Animais , Colágeno , Modelos Animais de Doenças , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta , Fatores de Crescimento Transformadores , Remodelação Vascular/fisiologia
3.
Front Cardiovasc Med ; 9: 1020186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698956

RESUMO

Prosthetic valve endocarditis (PVE) is a rare but dangerous complication of Bentall surgery and Staphylococcus epidermidis PVE involving multiple valves simultaneously during the early postoperative period has not been reported. A 42 year old patient admitted to intensive care unit with fever 1 month after aortic valve replacement (Bentall procedure). Echocardiography was of great diagnosis value and suggested large, mobile vegetations on both the prosthetic aortic valve and native tricuspid valve. The presence of Staphylococcus epidermidis was revealed by multiple blood cultures. Surgery was not performed because of the history of aortic valve replacement 1 month ago. He developed acute right femoral artery thromboembolism, multiple cerebral infarction and splenic infarction during hospitalization and died of cerebral infarction after being discharged. This case underlines that patients with early PVE may have poor prognosis and fatal systemic embolism should be aware of in PVE patients with large vegetations present with dyskinesia, abdominal pain, and limb numbness. The timely echocardiography and vascular ultrasound are primary and reliable diagnostic methods in this scenario.

4.
Front Oncol ; 11: 651622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367952

RESUMO

BACKGROUND: Cancer stem cells (CSCs) have been proven to influence drug resistance, recurrence, and metastasis in tumors. Our study aimed to identify stemness-related prognostic biomarkers for new therapeutic strategies in adrenocortical carcinoma. METHODS: RNA-seq data and clinical characteristics were downloaded from The Cancer Genome Atlas (TCGA). The stemness indexes, mDNAsi and mRNAsi, were calculated to classify all samples into low-score and high-score groups. Two algorithms, based on the R language, ESTIMATE and single-sample Gene Set Enrichment Analysis (ssGSEA) were used to assess the immune cell infiltration states of adrenocortical carcinoma patients. Weighted Gene Co-expression Network Analysis (WGCNA) was used to find genes that were related to the stemness of cancer. By bioinformatics methods, the correlations between biomarkers capable of predicting immune checkpoint inhibitors (ICIs) responses and stemness of cancer were explored. RESULTS: High-mRNAsi predicted shorter overall survival (OS) and a higher metastatic trend in adrenocortical carcinoma (ACC) patients. Compared with the low-mRNAsi group, the high-mRNAsi group had a lower ImmuneScore and StromalScroe. Twenty-two stemness-related prognostic genes were obtained by WGCNA, which focused on the function of the cell cycle and cell mitosis. Immune cell infiltration, especially CD8+T cell, increased in the low-mRNAsi group compared with the high-mRNAsi group. Lower expression of PD-L1, CTLA-4, and TIGHT was evaluated in the high-mRNAsi group. CONCLUSIONS: ACC patients with high-mRNAsi have poor prognosis and less immune cell infiltration. Combined with the finding of lower expression of CTLA-4, TIGHT, and PD-L1 in the high-mRNAsi group, we came to the conclusion that stemness index is a potential biomarker to predict the effectiveness of ICIs.

5.
JVS Vasc Sci ; 1: 42-56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754721

RESUMO

OBJECTIVE: The arteriovenous fistula (AVF) is the preferred method of dialysis access because of its proven superior long-term outcomes.However, women havelower rates of AVF patency andutilizationthan men.We used a novel mouseAVF model that recapitulates human AVF maturation to determine whether there are differences in AVF patency in female and male mice. METHODS: Aortocaval fistulas were created in female and male C57BL/6 mice (9-10 weeks). At days 0, 3, 7, and 21, infrarenal inferior vena cava (IVC) and aortic diameters and flow velocity were monitored by Doppler ultrasound and used to calculate the vessel diameter, blood flow, and shear stress. AVF were harvested, and expression of proteins was examined by proteomic analysis and immunofluorescence and of messenger RNA by quantitative polymerase chain reaction analysis. RESULTS: At baseline, female mice weighed less and had lower IVC velocity and smaller magnitudes of shear stress, but there was no significant difference in IVC diameter and thickness. After AVF creation, both female and male mice had similar IVC dilation and thickening with no significant differences in IVC wall thickness at day 21. However, female mice had diminished AVF patency by day 42 (25.7% vs 64.3%; P = .039). During fistula remodeling, female mice had lower IVC mean velocity and shear stress magnitude and increased spectral broadening (days 0-21). Messenger RNA and protein expression of Krüppel-like factor 2, endothelial nitric oxide synthase, and vascular cell adhesion molecule 1 was similar at baseline in female and male mice but increased in the AVF only in male mice but not in female mice (day 21). Proteomic analysis of female and male mice detected 56 proteins expressed at significantly higher levels in the IVC of female mice and 67 proteins expressed at significantly higher levels in the IVC of male mice (day 7); function-specific analysis showed that the IVC of male mice overexpressed proteins that belong to pathways implicated in the regulation of vascular function, thrombosis, response to flow, and vascular remodeling. CONCLUSIONS: AVF in female mice have diminished patency, preceded by lower velocity, reduced magnitudes of shear stress, and less laminar flow during remodeling. There is also sex-specific differential expression of proteins involved in thrombosis, response to laminar flow, inflammation, and proliferation. These findings suggest that hemodynamic changes during fistula maturation may play an important role underlying the diminished rates of AVF utilization in women. CLINICAL RELEVANCE: Women have lower rates of arteriovenous fistula (AVF) utilization than men. Using a mouse AVF model that recapitulates human AVF maturation, we show that female mice have similar AVF remodeling but diminished patency. AVF remodeling in female mice is associated with reduced shear stress and laminar flow; lack of increased transcription and translation of several anti-inflammatory, antiproliferative, and laminar flow response proteins (endothelial nitric oxide synthase, Krüppel-like factor 2, and vascular cell adhesion molecule 1); and different patterns of expression of pathways that regulate thrombosis and venous remodeling. Identifying downstream targets involved in these mechanisms may improve AVF outcomes in female patients.

7.
Arterioscler Thromb Vasc Biol ; 40(7): e203-e213, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460580

RESUMO

OBJECTIVE: Arteriovenous fistulae (AVF) are the optimal conduit for hemodialysis access but have high rates of primary maturation failure. Successful AVF maturation requires wall thickening with deposition of ECM (extracellular matrix) including collagen and fibronectin, as well as lumen dilation. TAK1 (TGFß [transforming growth factor-beta]-activated kinase 1) is a mediator of noncanonical TGFß signaling and plays crucial roles in regulation of ECM production and deposition; therefore, we hypothesized that TAK1 regulates wall thickening and lumen dilation during AVF maturation. Approach and Results: In both human and mouse AVF, immunoreactivity of TAK1, JNK (c-Jun N-terminal kinase), p38, collagen 1, and fibronectin was significantly increased compared with control veins. Manipulation of TAK1 in vivo altered AVF wall thickening and luminal diameter; reduced TAK1 function was associated with reduced thickness and smaller diameter, whereas activation of TAK1 function was associated with increased thickness and larger diameter. Arterial magnitudes of laminar shear stress (20 dyne/cm2) activated noncanonical TGFß signaling including TAK1 phosphorylation in mouse endothelial cells. CONCLUSIONS: TAK1 is increased in AVF, and TAK1 manipulation in a mouse AVF model regulates AVF thickness and diameter. Targeting noncanonical TGFß signaling such as TAK1 might be a novel therapeutic approach to improve AVF maturation.


Assuntos
Aorta/cirurgia , Derivação Arteriovenosa Cirúrgica , MAP Quinase Quinase Quinases/metabolismo , Grau de Desobstrução Vascular , Remodelação Vascular , Veia Cava Inferior/cirurgia , Animais , Aorta/diagnóstico por imagem , Aorta/enzimologia , Aorta/fisiopatologia , Células Cultivadas , Colágeno Tipo I/metabolismo , Células Endoteliais/enzimologia , Fibronectinas/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/genética , Masculino , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Fosforilação , Estresse Mecânico , Veia Cava Inferior/diagnóstico por imagem , Veia Cava Inferior/enzimologia , Veia Cava Inferior/fisiopatologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Sci Rep ; 9(1): 11046, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363142

RESUMO

Arteriovenous fistulae (AVF) are the most common access created for hemodialysis, but up to 60% do not sustain dialysis within a year, suggesting a need to improve AVF maturation and patency. In a mouse AVF model, Akt1 regulates fistula wall thickness and diameter. We hypothesized that inhibition of the Akt1-mTORC1 axis alters venous remodeling to improve AVF patency. Daily intraperitoneal injections of rapamycin reduced AVF wall thickness with no change in diameter. Rapamycin decreased smooth muscle cell (SMC) and macrophage proliferation; rapamycin also reduced both M1 and M2 type macrophages. AVF in mice treated with rapamycin had reduced Akt1 and mTORC1 but not mTORC2 phosphorylation. Depletion of macrophages with clodronate-containing liposomes was also associated with reduced AVF wall thickness and both M1- and M2-type macrophages; however, AVF patency was reduced. Rapamycin was associated with improved long-term patency, enhanced early AVF remodeling and sustained reduction of SMC proliferation. These results suggest that rapamycin improves AVF patency by reducing early inflammation and wall thickening while attenuating the Akt1-mTORC1 signaling pathway in SMC and macrophages. Macrophages are associated with AVF wall thickening and M2-type macrophages may play a mechanistic role in AVF maturation. Rapamycin is a potential translational strategy to improve AVF patency.


Assuntos
Derivação Arteriovenosa Cirúrgica/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/uso terapêutico , Remodelação Vascular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Nefropatias/metabolismo , Nefropatias/terapia , Camundongos , Diálise Renal , Sirolimo/farmacologia
9.
J Vis Exp ; (149)2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31355803

RESUMO

Central venous stenosis is an important entity contributing to arteriovenous fistula (AVF) failure. A murine AVF model was modified to create a partial ligation of the inferior vena cava (IVC) in the outflow of the fistula, mimicking central venous stenosis. Technical aspects of this model are introduced. The aorta and IVC are exposed, following an abdominal incision. The infra-renal aorta and IVC are dissected for proximal clamping, and the distal aorta is exposed for puncture. The IVC at the midpoint between the left renal vein and the aortic bifurcation is carefully dissected to place an 8-0 suture beneath the IVC. After clamping the aorta and IVC, an AVF is created by puncturing the infra-renal aorta through both walls into the IVC with a 25 G needle, followed by ligating a 22 G intra-venous (IV) catheter and IVC together. The catheter is then removed, creating a reproducible venous stenosis without occlusion. The aorta and IVC are unclamped after confirming primary hemostasis. This novel model of central vein stenosis is easy to perform, reproducible, and will facilitate studies on AVF failure.


Assuntos
Fístula Arteriovenosa/terapia , Constrição Patológica/etiologia , Veia Cava Inferior/cirurgia , Animais , Modelos Animais de Doenças , Masculino , Camundongos
10.
Arterioscler Thromb Vasc Biol ; 39(4): 754-764, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30786746

RESUMO

Objective- Arteriovenous fistulae (AVF) are the most common access created for hemodialysis; however, many AVF fail to mature and require repeated intervention, suggesting a need to improve AVF maturation. Eph-B4 (ephrin type-B receptor 4) is the embryonic venous determinant that is functional in adult veins and can regulate AVF maturation. Cav-1 (caveolin-1) is the major scaffolding protein of caveolae-a distinct microdomain that serves as a mechanosensor at the endothelial cell membrane. We hypothesized that Cav-1 function is critical for Eph-B4-mediated AVF maturation. Approach and Results- In a mouse aortocaval fistula model, both Cav-1 mRNA and protein were increased in the AVF compared with control veins. Cav-1 KO (knockout) mice showed increased fistula wall thickening ( P=0.0005) and outward remodeling ( P<0.0001), with increased eNOS (endothelial NO synthase) activity compared with WT (wild type) mice. Ephrin-B2/Fc inhibited AVF outward remodeling in WT mice but not in Cav-1 KO mice and was maintained in Cav-1 RC (Cav-1 endothelial reconstituted) mice (WT, P=0.0001; Cav-1 KO, P=0.7552; Cav-1 RC, P=0.0002). Cavtratin-a Cav-1 scaffolding domain peptide-decreased AVF wall thickness in WT mice and in Eph-B4 het mice compared with vehicle alone (WT, P=0.0235; Eph-B4 het, P=0.0431); cavtratin also increased AVF patency (day 42) in WT mice ( P=0.0275). Conclusions- Endothelial Cav-1 mediates Eph-B4-mediated AVF maturation. The Eph-B4-Cav-1 axis regulates adaptive remodeling during venous adaptation to the fistula environment. Manipulation of Cav-1 function may be a translational strategy to enhance AVF patency.


Assuntos
Derivação Arteriovenosa Cirúrgica , Caveolina 1/fisiologia , Receptor EphB4/fisiologia , Transdução de Sinais/fisiologia , Veia Cava Inferior/fisiologia , Animais , Aorta Abdominal/cirurgia , Cavéolas/metabolismo , Caveolina 1/biossíntese , Caveolina 1/deficiência , Caveolina 1/genética , Caveolina 1/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Hemorreologia , Humanos , Pulmão/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/fisiologia , Fragmentos de Peptídeos/farmacologia , Remodelação Vascular/fisiologia , Veia Cava Inferior/cirurgia
11.
J Vasc Surg ; 69(1): 253-262, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30154011

RESUMO

BACKGROUND: Arteries, veins, and lymphatic vessels are distinguished by structural differences that correspond to their different functions. Each of these vessels is also defined by specific molecular markers that persist throughout adult life; these markers are some of the molecular determinants that control the differentiation of embryonic undifferentiated cells into arteries, veins, or lymphatics. METHODS: This is a review of experimental literature. RESULTS: The Eph-B4 receptor and its ligand, ephrin-B2, are critical molecular determinants of vessel identity, arising on endothelial cells early in embryonic development. Eph-B4 and ephrin-B2 continue to be expressed on adult vessels and mark vessel identity. However, after vascular surgery, vessel identity can change and is marked by altered Eph-B4 and ephrin-B2 expression. Vein grafts show loss of venous identity, with less Eph-B4 expression. Arteriovenous fistulas show gain of dual arterial-venous identity, with both Eph-B4 and ephrin-B2 expression, and manipulation of Eph-B4 improves arteriovenous fistula patency. Patches used to close arteries and veins exhibit context-dependent gain of identity, that is, patches in the arterial environment gain arterial identity, whereas patches in the venous environment gain venous identity; these results show the importance of the host infiltrating cells in determining vascular identity after vascular surgery. CONCLUSIONS: Changes in the vessel's molecular identity after vascular surgery correspond to structural changes that depend on the host's postsurgical environment. Regulation of vascular identity and the underlying molecular mechanisms may allow new therapeutic approaches to improve vascular surgical procedures.


Assuntos
Artérias/metabolismo , Biomarcadores/metabolismo , Vasos Linfáticos/metabolismo , Veias/metabolismo , Animais , Artérias/embriologia , Artérias/cirurgia , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfangiogênese , Vasos Linfáticos/embriologia , Vasos Linfáticos/cirurgia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Receptor EphB4/genética , Receptor EphB4/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Procedimentos Cirúrgicos Vasculares , Veias/embriologia , Veias/cirurgia
12.
Int J Cancer ; 144(3): 558-568, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230528

RESUMO

Androgen receptor (AR) signaling is involved in the initiation and progression of prostate cancer (PCa), which is the most frequently diagnosed nonskin cancer and remains a leading cause of cancer-related death in men. Further investigation of the involvement of AR signaling in PCa progression is urgently needed. In the present study, we performed a yeast two-hybrid screen and demonstrated that SERTA domain-containing protein 1 (Sertad1) is a novel AR-binding protein that binds to the AR ligand binding domain (LBD). The binding between AR-LBD and Sertad1 was confirmed by glutathione S-transferase (GST) pull-down assays and immunoprecipitation (IP) and confocal immunofluorescence co-localization experiments. Furthermore, we demonstrated that DHT inhibited Sertad1 protein degradation in prostate cancer cell lines and that Sertad1 knockdown inhibited the proliferation of prostate cancer cells in vitro. In human PCa tumor tissues, Sertad1 expression is positively correlated with AR expression and the Gleason score. Taken together, this report is the first to show that Sertad1 is a novel AR-LBD-binding protein, and DHT-liganded AR-LBD inhibits Sertad1 degradation. Thus, Sertad1 may represent a novel therapeutic target for the treatment of AR-positive PCa.


Assuntos
Proteínas Nucleares/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transativadores/metabolismo , Adulto , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Ligantes , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Proteínas Nucleares/genética , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Domínios Proteicos , RNA Neoplásico/sangue , RNA Neoplásico/genética , Receptores Androgênicos/genética , Transativadores/genética , Fatores de Transcrição
13.
Circulation ; 139(5): 679-693, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30586711

RESUMO

BACKGROUND: Vascular smooth muscle cells (SMCs) synthesize extracellular matrix (ECM) that contributes to tissue remodeling after revascularization interventions. The cytokine transforming growth factor ß (TGF-ß) is induced on tissue injury and regulates tissue remodeling and wound healing, but dysregulated signaling results in excess ECM deposition and fibrosis. The LIM (Lin11, Isl-1 & Mec-3) domain protein LIM domain only 7 (LMO7) is a TGF-ß1 target gene in hepatoma cells, but its role in vascular physiology and fibrosis is unknown. METHODS: We use carotid ligation and femoral artery denudation models in mice with global or inducible smooth muscle-specific deletion of LMO7, and knockout, knockdown, overexpression, and mutagenesis approaches in mouse and human SMC, and human arteriovenous fistula and cardiac allograft vasculopathy samples to assess the role of LMO7 in neointima and fibrosis. RESULTS: We demonstrate that LMO7 is induced postinjury and by TGF-ß in SMC in vitro. Global or SMC-specific LMO7 deletion enhanced neointimal formation, TGF-ß signaling, ECM deposition, and proliferation in vascular injury models. LMO7 loss of function in human and mouse SMC enhanced ECM protein expression at baseline and after TGF-ß treatment. TGF-ß neutralization or receptor antagonism prevented the exacerbated neointimal formation and ECM synthesis conferred by loss of LMO7. Notably, loss of LMO7 coordinately amplified TGF-ß signaling by inducing expression of Tgfb1 mRNA, TGF-ß protein, αv and ß3 integrins that promote activation of latent TGF-ß, and downstream effectors SMAD3 phosphorylation and connective tissue growth factor. Mechanistically, the LMO7 LIM domain interacts with activator protein 1 transcription factor subunits c-FOS and c-JUN and promotes their ubiquitination and degradation, disrupting activator protein 1-dependent TGF-ß autoinduction. Importantly, preliminary studies suggest that LMO7 is upregulated in human intimal hyperplastic arteriovenous fistula and cardiac allograft vasculopathy samples, and inversely correlates with SMAD3 phosphorylation in cardiac allograft vasculopathy. CONCLUSIONS: LMO7 is induced by TGF-ß and serves to limit vascular fibrotic responses through negative feedback regulation of the TGF-ß pathway. This mechanism has important implications for intimal hyperplasia, wound healing, and fibrotic diseases.


Assuntos
Proteínas com Domínio LIM/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Retroalimentação Fisiológica , Fibrose , Hiperplasia , Integrina alfaVbeta3/metabolismo , Proteínas com Domínio LIM/deficiência , Proteínas com Domínio LIM/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/genética , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia
14.
Am J Physiol Cell Physiol ; 315(6): C885-C896, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404559

RESUMO

We have previously shown that bone marrow-derived mesenchymal stem cells (BMSC) accelerate wound healing in a diabetic mouse model. In this study, we hypothesized that adipose tissue-derived stem cells (ADSC), cells of greater translational potential to human therapy, improve diabetic wound healing to a similar extent as BMSC. In vitro, the characterization and function of murine ADSC and BMSC as well as human diabetic and nondiabetic ADSC were evaluated by flow cytometry, cell viability, and VEGF expression. In vivo, biomimetic collagen scaffolds containing murine ADSC or BMSC were used to treat splinted full-thickness excisional back wounds on diabetic C57BL/6 mice, and human healthy and diabetic ADSC were used to treat back wounds on nude mice. Wound healing was evaluated by wound area, local VEGF-A expression, and count of CD31-positive cells. Delivery of murine ADSC or BMSC accelerated wound healing in diabetic mice to a similar extent, compared with acellular controls ( P < 0.0001). Histological analysis showed similarly increased cellular proliferation ( P < 0.0001), VEGF-A expression ( P = 0.0002), endothelial cell density ( P < 0.0001), numbers of macrophages ( P < 0.0001), and smooth muscle cells ( P < 0.0001) with ADSC and BMSC treatment, compared with controls. Cell survival and migration of ADSC and BMSC within the scaffolds were similar ( P = 0.781). Notch signaling was upregulated to a similar degree by both ADSC and BMSC. Diabetic and nondiabetic human ADSC expressed similar levels of VEGF-A ( P = 0.836) in vitro, as well as in scaffolds ( P = 1.000). Delivery of human diabetic and nondiabetic ADSC enhanced wound healing to a similar extent in a nude mouse wound model. Murine ADSC and BMSC delivered in a biomimetic-collagen scaffold are equivalent at enhancing diabetic wound healing. Human diabetic ADSC are not inferior to nondiabetic ADSC at accelerating wound healing in a nude mouse model. This data suggests that ADSC are a reasonable choice to evaluate for translational therapy in the treatment of human diabetic wounds.


Assuntos
Tecido Adiposo/transplante , Diabetes Mellitus Experimental/terapia , Transplante de Células-Tronco Mesenquimais , Cicatrização/fisiologia , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Proliferação de Células/genética , Sobrevivência Celular/genética , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Neovascularização Fisiológica/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Fator A de Crescimento do Endotélio Vascular/genética
15.
Stem Cell Res Ther ; 9(1): 188, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29996912

RESUMO

BACKGROUND: Diabetic foot ulcer (DFU) is a severe complication of diabetes, preceding most diabetes-related amputations. DFUs require over US$9 billion for yearly treatment and are now a global public health issue. DFU occurs in the setting of ischemia, infection, neuropathy, and metabolic disorders that result in poor wound healing and poor treatment options. Recently, stem cell therapy has emerged as a new interventional strategy to treat DFU and appears to be safe and effective in both preclinical and clinical trials. However, variability in the stem cell type and origin, route and protocol for administration, and concomitant use of angioplasty confound easy interpretation and generalization of the results. METHODS: The PubMed, Google Scholar, and EMBASE databases were searched and 89 preclinical and clinical studies were selected for analysis. RESULTS: There was divergence between preclinical and clinical studies regarding stem cell type, origin, and delivery techniques. There was heterogeneous preclinical and clinical study design and few randomized clinical trials. Granulocyte-colony stimulating factor was employed in some studies but with differing protocols. Concomitant performance of angioplasty with stem cell therapy showed increased efficiency compared to either therapy alone. CONCLUSIONS: Stem cell therapy is an effective treatment for diabetic foot ulcers and is currently used as an alternative to amputation for some patients without other options for revascularization. Concordance between preclinical and clinical studies may help design future randomized clinical trials.


Assuntos
Amputação Cirúrgica/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Complicações do Diabetes/terapia , Pé Diabético/terapia , Humanos , Cicatrização
16.
Vasc Investig Ther ; 1(1): 14-23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31406962

RESUMO

Vascular identity is genetically determined, but can be altered during surgical procedures. We hypothesized that the environment of the procedure critically alters the identity of autologous tissue patches implanted into the arterial or venous environment. Autologous jugular vein or carotid artery was used as a patch to repair a rat aorta or inferior vena cava. In the aortic environment patches contained neointimal cells that were CD34/Ephrin-B2-dual positive but not CD34/Eph-B4-dual positive; patches expressed Ephrin-B2, notch-4 and dll-4 but not Eph-B4 and COUP-TFII. In the venous environment patches contained neointimal cells that were CD34/Eph-B4-dual positive but not CD34/Ephrin-B2-dual positive; patches expressed Eph-B4 and COUP-TFII but not Ephrin-B2, notch-4 and dll-4. These data show that autologous tissue patches heal by acquisition of the vascular identity determined by the environment into which they are implanted, suggesting some plasticity of adult vascular identity.

17.
Arterioscler Thromb Vasc Biol ; 38(1): 195-205, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29146747

RESUMO

OBJECTIVE: Pseudoaneurysms remain a significant complication after vascular procedures. We hypothesized that TGF-ß (transforming growth factor-ß) signaling plays a mechanistic role in the development of pseudoaneurysms. APPROACH AND RESULTS: Rat aortic pericardial patch angioplasty was associated with a high incidence (88%) of pseudoaneurysms at 30 days, with increased smad2 phosphorylation in small pseudoaneurysms but not in large pseudoaneurysms; TGF-ß1 receptors were increased in small pseudoaneurysms and preserved in large pseudoaneurysms. Delivery of TGF-ß1 via nanoparticles covalently bonded to the patch stimulated smad2 phosphorylation both in vitro and in vivo and significantly decreased pseudoaneurysm formation (6.7%). Inhibition of TGF-ß1 signaling with SB431542 decreased smad2 phosphorylation both in vitro and in vivo and significantly induced pseudoaneurysm formation by day 7 (66.7%). CONCLUSIONS: Normal healing after aortic patch angioplasty is associated with increased TGF-ß1 signaling, and recruitment of smad2 signaling may limit pseudoaneurysm formation; loss of TGF-ß1 signaling is associated with the formation of large pseudoaneurysms. Enhancement of TGF-ß1 signaling may be a potential mechanism to limit pseudoaneurysm formation after vascular intervention.


Assuntos
Falso Aneurisma/prevenção & controle , Angioplastia/instrumentação , Aorta/cirurgia , Aneurisma Aórtico/prevenção & controle , Materiais Revestidos Biocompatíveis , Pericárdio/transplante , Fator de Crescimento Transformador beta1/administração & dosagem , Cicatrização/efeitos dos fármacos , Falso Aneurisma/etiologia , Falso Aneurisma/metabolismo , Falso Aneurisma/patologia , Angioplastia/efeitos adversos , Animais , Aorta/metabolismo , Aorta/patologia , Aneurisma Aórtico/etiologia , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Células Cultivadas , Masculino , Camundongos , Nanopartículas , Fosforilação , Desenho de Prótese , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Fatores de Tempo
18.
Sci Rep ; 7(1): 15386, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133876

RESUMO

Low rates of arteriovenous fistula (AVF) maturation prevent optimal fistula use for hemodialysis; however, the mechanism of venous remodeling in the fistula environment is not well understood. We hypothesized that the embryonic venous determinant Eph-B4 mediates AVF maturation. In human AVF and a mouse aortocaval fistula model, Eph-B4 protein expression increased in the fistula vein; expression of the arterial determinant Ephrin-B2 also increased. Stimulation of Eph-B-mediated signaling with Ephrin-B2/Fc showed improved fistula patency with less wall thickness. Mutagenesis studies showed that tyrosine-774 is critical for Eph-B4 signaling and administration of inactive Eph-B4-Y774F increased fistula wall thickness. Akt1 expression also increased in AVF; Akt1 knockout mice showed reduced fistula diameter and wall thickness. In Akt1 knockout mice, stimulation of Eph-B signaling with Ephrin-B2/Fc showed no effect on remodeling. These results show that AVF maturation is associated with acquisition of dual arteriovenous identity; increased Eph-B activity improves AVF patency. Inhibition of Akt1 function abolishes Eph-B-mediated venous remodeling suggesting that Eph-B4 regulates AVF venous adaptation through an Akt1-mediated mechanism.


Assuntos
Derivação Arteriovenosa Cirúrgica , Grau de Desobstrução Vascular , Remodelação Vascular , Animais , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor EphB2/genética , Receptor EphB2/metabolismo , Receptor EphB4/genética
19.
Ann Vasc Dis ; 10(1): 8-16, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29034014

RESUMO

Autogenous vein grafts remain the gold standard conduit for arterial bypass, particularly for the treatment of critical limb ischemia. Vein graft adaptation to the arterial environment, i.e., adequate dilation and wall thickening, contributes to the superior performance of vein grafts. However, abnormal venous wall remodeling with excessive neointimal hyperplasia commonly causes vein graft failure. Since the PREVENT trials failed to improve vein graft outcomes, new strategies focus on the adaptive response of the venous endothelial cells to the post-surgical arterial environment. Eph-B4, the determinant of venous endothelium during embryonic development, remains expressed and functional in adult venous tissue. After surgery, vein grafts lose their venous identity, with loss of Eph-B4 expression; however, arterial identity is not gained, consistent with loss of all vessel identity. In mouse vein grafts, stimulation of venous Eph-B4 signaling promotes retention of venous identity in endothelial cells and is associated with vein graft walls that are not thickened. Eph-B4 regulates downstream signaling pathways of relevance to vascular biology, including caveolin-1, Akt, and endothelial nitric oxide synthase (eNOS). Regulation of the Eph-B4 signaling pathway may be a novel therapeutic target to prevent vein graft failure.

20.
J Biomed Mater Res A ; 105(12): 3422-3431, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28877393

RESUMO

Polyester is commonly used in vascular surgery for patch angioplasty and grafts. We hypothesized that polyester patches heal by infiltration of arterial or venous progenitor cells depending on the site of implantation. Polyester patches were implanted into the Wistar rat aorta or inferior vena cava and explanted on day 7 or 30. Neointima that formed on polyester patches was thicker in the venous environment compared to the amount that formed on patches in the arterial environment. Venous patches had more cell proliferation and greater numbers of VCAM-positive and CD68-positive cells, whereas arterial patches had greater numbers of vimentin-positive and alpha-actin-positive cells. Although there were similar numbers of endothelial progenitor cells in the neointimal endothelium, cells in the arterial patch were Ephrin-B2- and notch-4-positive while those in the venous patch were Eph-B4- and COUP-TFII-positive. Venous patches treated with an arteriovenous fistula had decreased neointimal thickness; neointimal endothelial cells expressed Ephrin-B2 and notch-4 in addition to Eph-B4 and COUP-TFII. Polyester patches in the venous environment acquire venous identity, whereas patches in the arterial environment acquire arterial identity; patches in the fistula environment acquire dual arterial-venous identity. These data suggest that synthetic patches heal by acquisition of identity of their environment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3422-3431, 2017.


Assuntos
Aorta/citologia , Prótese Vascular/efeitos adversos , Neointima/etiologia , Poliésteres/efeitos adversos , Veia Cava Inferior/citologia , Angioplastia/efeitos adversos , Animais , Aorta/patologia , Aorta/cirurgia , Velocidade do Fluxo Sanguíneo , Proliferação de Células , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/patologia , Masculino , Neointima/patologia , Ratos Wistar , Veia Cava Inferior/patologia , Veia Cava Inferior/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA