Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Mol Breed ; 44(10): 69, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39359407

RESUMO

The PHOSPHATE STARVATION RESPONSE REGULATOR (PHR) plays a crucial regulatory role in plants during the process of responding to phosphate starvation. In this study, we combined reverse genetics and biotechnology to investigate the function of ZmPHR1 and ZmPHR2, including proteins containing the Myb_DNA_banding and Myb_CC-LHEQLE structural domains, in maize seedlings. Phylogenetic analysis revealed that ZmPHR1 and ZmPHR2 have high homology with AtPHR1 and OsPHR2, and share the characteristic features of nuclear localisation and transcriptional self-activation. Real-time quantitative PCR analysis showed that low phosphate (Pi) stress significantly induced the expression of ZmPHR1 and ZmPHR2 in maize seedling stage, and candidate gene association analysis further revealed the close association of these two genes with root traits under Pi stress conditions. Transgenic plants overexpressing ZmPHR1 and ZmPHR2 in Arabidopsis show a significant increase in lateral root number, fresh weight and total phosphorus accumulation under low-Pi stress. Besides, CHIP-PCR experiments identified target genes involved in hormone regulation, metal ion transport and homeostasis, phosphatase encoding, and photosynthesis, providing new insights into the biological functions of ZmPHR1 and ZmPHR2. Furthermore, our study showed that ZmPHR1 interacts with six SPX domain-only proteins (ZmSPXs) in maize, while ZmPHR2 interacts with five of these proteins. ZmPHR1 and ZmPHR2 expression was repressed in low Pi conditions, but was up-regulated in ZmSPX1 knockout material, according to our study of transgenic seedlings overexpressing ZmSPX1 in maize. We identified downstream target genes involved in the phosphorus signaling pathway, which are mainly involved in plant-pathogen interactions, ascorbic acid and arabinose metabolism, and ABC transporter proteins, by RNA-seq analysis of transgenic seedlings grown under low Pi stress for 7 days. Collectively, these results provide important clues to elucidate the role and functional significance of ZmPHR1 and ZmPHR2 under low Pi stress and also provide insights into understand the molecular mechanism of phosphorus homeostasis in maize. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01508-2.

2.
Molecules ; 29(19)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39407541

RESUMO

Quinolone antibiotics (QNs) contamination in the aquatic environment is a global public health issue considering their resistance and mobility. In this study, a simple, efficient, and sensitive method was developed for the accurate quantification of fifteen QNs in water using automated disk-based solid-phase extraction (SPE) coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). By utilizing a 3M SDB-XC disk to enrich QNs from a 1000 mL water sample, the detection limits were improved to 0.008-0.055 ng/L due to the satisfactory enrichment factors of 897-1136, but only requiring about 60 min per six samples. The linearity of the method ranged from 0.05 to 100 µg/L for the 15 QNs, with correlation coefficients of 0.9992-0.9999, and the recoveries were in the range of 81-114%, with relative standard deviations of 0.2-13.3% (n = 6). The developed method was applicable for the quantification of trace QNs at low ng/L levels in drinking and environmental waters. The results showed that no QNs were detected in tap water, while three and four QNs were detected in the river water of Zhoushan and the seawater of Daiquyang and Yueqing Bay, East China, respectively, with a total concentration of 1.600-8.511 ng/L and 1.651-16.421 ng/L, respectively. Among the detected QNs, ofloxacin (OFL) was the predominant compound in river water, while enrofloxacin (ENR) was predominant in seawater. The risk quotient (RQ) results revealed that QNs posed a low risk to crustaceans and fish, but a low-to-medium risk to algae, and OFL presented the main ecological risk factor in river water, while ENR and CIP in seawater. Overall, the proposed automated disk-based SPE-UPLC-MS/MS method is highly efficient and sensitive, making it suitable for routine analysis of QNs in drinking and environmental waters.


Assuntos
Antibacterianos , Água Potável , Quinolonas , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Espectrometria de Massas em Tandem/métodos , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Quinolonas/análise , Antibacterianos/análise , Água Potável/análise , Água Potável/química , Cromatografia Líquida de Alta Pressão/métodos , Medição de Risco , Monitoramento Ambiental/métodos , Limite de Detecção , Rios/química , Espectrometria de Massa com Cromatografia Líquida
3.
Sci Total Environ ; 953: 176066, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39250971

RESUMO

Antibiotics play an essential role in the aquaculture industry, but their overuse and weak degradability inevitably lead to light to severe residues in natural and aquaculture environments. Most studies were interested in the occurrence, distribution, and ecological risks of a limited number of antibiotics in natural environments (rivers, lakes, and coastal regions) with a minor focus on antibiotic presence in either water, sediments, or organisms in aquaculture environments located in specific regions. In this study, we conducted a comprehensive investigation into the occurrence and distribution of up to 32 antibiotics [including 15 quinolones (QNs) and 17 sulfonamides (SAs)] in organisms and their corresponding environmental matrices from 26 freshwater aquaculture ponds in Northeast Zhejiang, China. A total of 13, 9, 7, and 7 antibiotics were detected in pond water, sediments, feeds, and aquaculture organisms, respectively, with concentration ranges of 0.6-92.2 ng/L, 0.4-1169.3 ng/g dw,

Assuntos
Aquicultura , Monitoramento Ambiental , Lagoas , Quinolonas , Sulfonamidas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Sulfonamidas/análise , China , Quinolonas/análise , Medição de Risco , Lagoas/química , Antibacterianos/análise , Animais , Água Doce/química
4.
J Chromatogr Sci ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119868

RESUMO

Volatile halogenated hydrocarbons (VHHs) are annually produced and released into the environment, posing a threat to public health. In this study, a simple, rapid, sensitive and automated method based on headspace and gas chromatography (GC) with electron-capture detection was described for the determination of VHHs in different concentration levels in water samples. The proposed headspace GC method was initially optimized, and the optimum experimental conditions found were 10-mL water sample containing 20% w/v sodium chloride placed in a 20-mL vial and stirred at 60°C for 35 min, and then 14 VHHs were well separated on DB-35 MS capillary column with a split ratio of 12.5: 1. The limits of detection were in the low µg/L level, ranging between 0.01 and 0.6 µg/L. Finally optimized method was applied for determination 14 VHHs in drinking and environmental waters. The total mean concentrations of VHHs were 34.962, 26.183, 3.228 and 647.344 µg/L in tap water, purified water with 1-year-old filter element, seawater and effluents, respectively. However, no VHHs was detected in purified water with a new filter element. The main composition is different among different water matrix, which may be attributed to their different sources.

5.
Front Microbiol ; 15: 1399907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915298

RESUMO

Mulberry has also been regarded as a valuable source of forage for ruminants. This study was developed to investigate the impact of four additives and combinations thereof on fermentation quality and bacterial communities associated with whole-plant mulberry silage. Control fresh material (FM) was left untreated, while other groups were treated with glucose (G, 20 g/kg FM), a mixture of Lactobacillus plantarum and L. buchneri (L, 106 CFU/g FM), formic acid (A, 5 mL/kg FM), salts including sodium benzoate and potassium sorbate (S, 1.5 g/kg FM), a combination of G and L (GL), a combination of G and A (GA), or a combination of G and S (GS), followed by ensiling for 90 days. Dry matter content in the A, S, GA, and GS groups was elevated relative to the other groups (p < 0.01). Relative to the C group, all additives and combinations thereof were associated with reductions in pH and NH3-N content (p < 0.01). The A groups exhibited the lowest pH and NH3-N content at 4.23 and 3.27 g/kg DM, respectively (p < 0.01), whereas the C groups demonstrated the highest values at 4.43 and 4.44 g/kg DM, respectively (p < 0.01). The highest levels of lactic acid were observed in the GA and A groups (70.99 and 69.14 g/kg DM, respectively; p < 0.01), followed by the GL, L, and GS groups (66.88, 64.17 and 63.68 g/kg DM, respectively), with all of these values being higher than those for the C group (53.27 g/kg DM; p < 0.01). Lactobacillus were the predominant bacteria associated with each of these samples, but the overall composition of the bacterial community was significantly impacted by different additives. For example, Lactobacillus levels were higher in the G, A, and GA groups (p < 0.01), while those of Weissella levels were raised in the L, GL, and GS groups (p < 0.01), Pediococcus levels were higher in the A and GA groups (p < 0.01), Enterococcus levels were higher in the G and S groups (p < 0.01), and Lactococcus levels were raised in the S group (p < 0.01). Relative to the C group, a reduction in the levels of undesirable Enterobacter was evident in all groups treated with additives (p < 0.01), with the greatest reductions being evident in the A, S, GA, and GS groups. The additives utilized in this study can thus improve the quality of whole-plant mulberry silage to varying extents through the modification of the associated bacterial community, with A and GA addition achieving the most efficient reductions in pH together with increases in lactic acid content and the suppression of undesirable bacterial growth.

6.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930985

RESUMO

The abuse and irrational use of tetracyclines (TCs) in human medicine and animal husbandry has become a serious concern, affecting the ecological environment and human health. The aim of this study was to develop a sensitive and selective method using fully automatic solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry for the determination of twelve TCs in water. Four isotope-labeled internal standards for TCs were used to correct matrix effects. Several parameters affecting extraction efficiency were systematically optimized, and the optimum experimental conditions found were 1.0 L water sample with 0.5 g/L Na2EDTA (pH 3.0) extracted and enriched by CNW HLB cartridge and eluted by 4 mL of acetone:methanol (v/v, 1:1). The enrichment factors were up to 798-1059 but only requiring about 60 min per six samples. Under the optimized conditions, the linearity of the method ranged from 0.2 to 100 µg/L for 12 TCs, the detection limits were as low as 0.01-0.15 ng/L, and the recoveries were in the range of 70%-118%, with relative standard deviations less than 15%. The developed method can be successfully utilized for the determination of 12 TCs in pure water, tap water, river water, and mariculture seawater. In summary, three and six TCs were detected in river water and mariculture seawater, respectively, with total concentrations of 0.074-0.520 ng/L (mean 0.248 ng/L) and 0.792-58.369 ng/L (12.629 ng/L), respectively. Tetracycline (TC) and oxytetracycline (OTC) were the dominant TCs in river water, while doxytetracycline (DXC) and OTC were dominant in mariculture seawater.


Assuntos
Água Potável , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Tetraciclinas , Poluentes Químicos da Água , Espectrometria de Massas em Tandem/métodos , Extração em Fase Sólida/métodos , Tetraciclinas/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Água Potável/química , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção
7.
MedComm (2020) ; 5(7): e611, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38938284

RESUMO

Targeting the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway has been identified as a successful approach for tumor immunotherapy. Here, we identified that the small molecule 5,7,4'-trimethoxyflavone (TF) from Kaempferia parviflora Wall reduces PD-L1 expression in colorectal cancer cells and enhances the killing of tumor cells by T cells. Mechanistically, TF targets and stabilizes the ubiquitin ligase HMG-CoA reductase degradation protein 1 (HRD1), thereby increasing the ubiquitination of PD-L1 and promoting its degradation through the proteasome pathway. In mouse MC38 xenograft tumors, TF can activate tumor-infiltrating T-cell immunity and reduce the immunosuppressive infiltration of myeloid-derived suppressor cells and regulatory T cells, thus exerting antitumor effects. Moreover, TF synergistically exerts antitumor immunity with CTLA-4 antibody. This study provides new insights into the antitumor mechanism of TF and suggests that it may be a promising small molecule immune checkpoint modulator for cancer therapy.

8.
PeerJ ; 12: e17104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680894

RESUMO

Advancements in cochlear implants (CIs) have led to a significant increase in bilateral CI users, especially among children. Yet, most bilateral CI users do not fully achieve the intended binaural benefit due to potential limitations in signal processing and/or surgical implant positioning. One crucial auditory cue that normal hearing (NH) listeners can benefit from is the interaural time difference (ITD), i.e., the time difference between the arrival of a sound at two ears. The ITD sensitivity is thought to be heavily relying on the effective utilization of temporal fine structure (very rapid oscillations in sound). Unfortunately, most current CIs do not transmit such true fine structure. Nevertheless, bilateral CI users have demonstrated sensitivity to ITD cues delivered through envelope or interaural pulse time differences, i.e., the time gap between the pulses delivered to the two implants. However, their ITD sensitivity is significantly poorer compared to NH individuals, and it further degrades at higher CI stimulation rates, especially when the rate exceeds 300 pulse per second. The overall purpose of this research thread is to improve spatial hearing abilities in bilateral CI users. This study aims to develop electroencephalography (EEG) paradigms that can be used with clinical settings to assess and optimize the delivery of ITD cues, which are crucial for spatial hearing in everyday life. The research objective of this article was to determine the effect of CI stimulation pulse rate on the ITD sensitivity, and to characterize the rate-dependent degradation in ITD perception using EEG measures. To develop protocols for bilateral CI studies, EEG responses were obtained from NH listeners using sinusoidal-amplitude-modulated (SAM) tones and filtered clicks with changes in either fine structure ITD (ITDFS) or envelope ITD (ITDENV). Multiple EEG responses were analyzed, which included the subcortical auditory steady-state responses (ASSRs) and cortical auditory evoked potentials (CAEPs) elicited by stimuli onset, offset, and changes. Results indicated that acoustic change complex (ACC) responses elicited by ITDENV changes were significantly smaller or absent compared to those elicited by ITDFS changes. The ACC morphologies evoked by ITDFS changes were similar to onset and offset CAEPs, although the peak latencies were longest for ACC responses and shortest for offset CAEPs. The high-frequency stimuli clearly elicited subcortical ASSRs, but smaller than those evoked by lower carrier frequency SAM tones. The 40-Hz ASSRs decreased with increasing carrier frequencies. Filtered clicks elicited larger ASSRs compared to high-frequency SAM tones, with the order being 40 > 160 > 80> 320 Hz ASSR for both stimulus types. Wavelet analysis revealed a clear interaction between detectable transient CAEPs and 40-Hz ASSRs in the time-frequency domain for SAM tones with a low carrier frequency.


Assuntos
Implantes Cocleares , Sinais (Psicologia) , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Estimulação Acústica/métodos , Localização de Som/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Fatores de Tempo
9.
Toxicol Appl Pharmacol ; 484: 116884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442791

RESUMO

BACKGROUND: The global increase in the aging population has led to a higher incidence of osteoporosis among the elderly. OBJECTIVE: This study aimed to evaluate the protective properties of pinoresinol diglucoside (PDG), an active constituent of Eucommia ulmoides, against dexamethasone-induced osteoporosis and chondrodysplasia. METHODS: A zebrafish model of osteoporosis was established by exposing larval zebrafish to dexamethasone. The impact of PDG on bone mineralization was assessed through alizarin red and calcein staining. Alkaline phosphatase activity was quantified to evaluate osteoblast function. The influence of PDG on chondrogenesis was estimated using alcian blue staining. Fluorescence imaging and motor behavior analysis were employed to assess the protective effect of PDG on the structure and function of dexamethasone-induced skeletal teratogenesis. qPCR determined the expression of osteogenesis and Wnt signaling-related genes. Molecular docking was used to assess the potential interactions between PDG and Wnt receptors. RESULTS: PDG significantly increased bone mineralization and corrected spinal curvature and cartilage malformations in the zebrafish model. Furthermore, PDG enhanced swimming abilities compared to the model group. PDG mitigated dexamethasone-induced skeletal abnormalities in zebrafish by upregulating Wnt signaling, showing potential interaction with Wnt receptors FZD2 and FZD5. CONCLUSION: PDG mitigates dexamethasone-induced osteoporosis and chondrodysplasia by promoting bone formation and activating Wnt signaling.


Assuntos
Lignanas , Osteoporose , Peixe-Zebra , Humanos , Animais , Idoso , Simulação de Acoplamento Molecular , Osteogênese , Dexametasona/farmacologia , Osteoporose/induzido quimicamente , Osteoporose/prevenção & controle , Receptores Wnt , Diferenciação Celular
10.
Bioresour Technol ; 399: 130576, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479625

RESUMO

In this study, a pilot-scale anaerobic membrane bioreactor (AnMBR) was developed to continuously produce volatile fatty acids (VFAs) from kitchen waste slurry under an alkaline condition. The alkaline fermentation effectively suppressed methanogenesis, thus achieving high VFAs production of 60.3 g/L. Acetic acid, propionic acid, and butyric acid accounted for over 95.0 % of the total VFAs. The VFAs yield, productivity, and chemical oxygen demand (COD) recovery efficiency reached 0.5 g/g-CODinfluent, 6.0 kg/m3/d, and 62.8 %, respectively. Moreover, the CODVFAs/CODeffluent ratio exceeded 96.0 %, and the CODVFAs/NH3-N ratio through ammonia distillation reached up to 192.5. The microbial community was reshaped during the alkaline fermentation with increasing salinity. The membrane fouling of the AnMBR was alleviated by chemical cleaning and sludge discharge, and membrane modules displayed a sustained filtration performance. In conclusion, this study demonstrated that high-quality VFAs could be efficiently produced from kitchen waste slurry using an AnMBR process via alkaline fermentation.


Assuntos
Reatores Biológicos , Salinidade , Fermentação , Anaerobiose , Ácidos Graxos Voláteis , Esgotos , Concentração de Íons de Hidrogênio
11.
Anal Chim Acta ; 1294: 342294, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336410

RESUMO

BACKGROUND: Tin and lead contamination is a global threat to marine ecosystems considering their species-specific toxicity, bioavailability and mobility. Hence simultaneous measurement of multiple tin and lead compounds at µg L-1 to pg L-1 levels in environmental water is always an indispensable but challengeable task. High performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) is one of the most widely used choices for this purpose because of good sensitivity, strong separation power and good compatibility. Previous HPLC-ICP-MS methods based on a single elemental speciation strategy are low-efficiency and sensitivity-insufficient for a large set of unstable samples and interaction of multiple metal(loid)s down to ng L-1 levels. RESULTS: In this study, we developed a sensitive, efficient and environment-friendly analytical method for accurate quantification of inorganic and organic species of tin and lead simultaneously based on HPLC-ICP-MS with online integration of solid phase extraction (SPE). By using graphene oxide modified silica conditioned with 1 mM benzoic acid to enrich tin and lead species from 10 mL sample, detection limits were improved to 2-8 pg per liter due to satisfactory enrichment factors (522-2848 folds). The SPE-HPLC-ICP-MS method was applicable to quantification of ultra-trace tin and lead species at pg L-1 levels in uncontaminated seawater. Tributyltin was the only tin species detected at subnanograms per liter levels while Pb(II) was the only lead species detected at several nanograms per liter in thirteen coastal seawater samples collected in Hangzhou Bay, indicating light contamination of tin and lead. SIGNIFICANCE: Overall, the proposed SPE-HPLC-ICP-MS method is highly sensitive, efficient and environment-friendly that are fairly suitable to routine speciation analysis of tin and lead in environmental, food, and biological samples.


Assuntos
Chumbo , Estanho , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ecossistema , Água do Mar , Extração em Fase Sólida/métodos
12.
Food Chem ; 443: 138552, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295562

RESUMO

Tin and lead are a global concern considering their species-dependent toxicity, bioavailability and transformation. Simultaneous speciation analysis of tin and lead is challenging for a large food capacity containing unstable species. Herein, we developed two sensitive methods for rapid quantification of tin and lead species in Antarctic seafood by high-performance liquid chromatography and inductively coupled plasma mass spectrometry based on strong cation-exchange and Amphion columns. Inorganic tin and lead, four organotin and two organolead compounds can be analysed in 16 min on a 10-cm Amphion II column (mobile phase: 4 mM sodium dodecyl benzene sulfonate at pH 2.0) with 0.02-0.24 µg L-1 detection limits. The method was applied to Antarctic krill and fish, demonstrating the presence of any tin and lead species down to µg kg-1 level. Overall, the proposed methods are sensitive, efficient and environment-friendly for routine speciation analysis of tin and lead in food samples.


Assuntos
Euphausiacea , Estanho , Animais , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Chumbo , Alimentos Marinhos , Peixes , Cátions
13.
Cell Rep Med ; 5(2): 101357, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38237597

RESUMO

Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blockade has become a mainstay of cancer immunotherapy. Targeting the PD-1/PD-L1 axis with small molecules is an attractive approach to enhance antitumor immunity. Here, we identified a natural marine product, benzosceptrin C (BC), that enhances the cytotoxicity of T cells to cancer cells by reducing the abundance of PD-L1. Furthermore, BC exerts its antitumor effect in mice bearing MC38 tumors by activating tumor-infiltrating T cell immunity. Mechanistic studies suggest that BC can prevent palmitoylation of PD-L1 by inhibiting DHHC3 enzymatic activity. Subsequently, PD-L1 is transferred from the membrane to the cytoplasm and cannot return to the membrane via recycling endosomes, triggering lysosome-mediated degradation of PD-L1. Moreover, the combination of BC and anti-CTLA4 effectively enhances antitumor T cell immunity. Our findings reveal a previously unrecognized antitumor mechanism of BC and represent an alternative immune checkpoint blockade (ICB) therapeutic strategy to enhance the efficacy of cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Imidazóis , Neoplasias , Pirróis , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Lisossomos/metabolismo
14.
Transl Anim Sci ; 8: txad139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38221957

RESUMO

The present study was aimed at elucidating the effects of feeding different forms of Humulus scandens (Hu) on performance and bacterial communities in piglets. A total of 160 piglets were divided into four groups: (1) a control (CG, basal diet); (2) a basal diet with Hu pulp (HS), basal diet + Hu pulp; (3) a basal diet with Hu juice (HSJ), basal diet + Hu juice; and (4) a basal diet with Hu residue (HSR), basal diet + Hu residue. Results showed that HS, HSJ, and HSR supplementation led to rich average daily gain (ADG) and poor feed conversion ratio (FCR) during 28 to 70 d of age, increased 120 d body weight (BW), average daily feed intake (ADFI) and ADG and decreased FCR during 71 to 120 d of age. Three experiment groups presented greater (P < 0.05) IgA, IgG, and IgM and lower (P < 0.05) glucose, and blood urea nitrogen. The content of diamine oxidase significantly decreased (P < 0.05) in HS group. The crude  protein and crude fiber digestibility were improved (P < 0.05) in HS group and the Ca digestibility was increased (P < 0.05) in HS and HSJ groups. HSR supplementation improved the abundance of Firmicutes and decreased the abundance of Bacteroidetes. Hu supplementation with different forms increased the proportion of Lactobacillus in cecum content. These results indicated that supplemental feeding of Hu with different forms improved serum immunity, nutrient digestibility, and bacterial communities in piglets, promoting growth and development, which may be regarded as a reference for developing novel feed resources for piglets.

15.
Anal Methods ; 16(4): 496-502, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078483

RESUMO

The detection of foodborne pathogens is crucial for food hygiene regulation and disease diagnosis. Colorimetry has become one of the main analytical methods in studying foodborne pathogens due to its advantages of visualization, low cost, simple operation, and no complex instrument. However, the low sensitivity limits its applications in early identification and on-site detection for trace analytes. In order to overcome such a limitation, herein we propose a joint strategy featuring dual signal amplification based on the hybridization chain reaction (HCR) and DNA-enhanced peroxidase-like activity of gold nanoparticles (AuNPs) for the sensitive visual detection of Escherichia coli. Target bacteria bound specifically to the aptamer domain in the capture hairpin probe, exposing the trigger domain for HCR and forming the extended double-stranded DNA (dsDNA) structures. The peroxidase-like catalytic capacity of AuNPs can be enhanced significantly by dsDNAs with the sticky ends of dsDNAs being adsorbed on AuNPs and the rigidity of dsDNAs causing the spatial regulation of AuNP concentration. The intensity of the enhancement was linearly related to the number of target bacteria. With the above strategy, the detection limit of our colorimetric method for Escherichia coli was down to 28 CFU mL-1 within a short analytical time (50 min). This study provides a new perspective for the sensitive and visual detection of early bacterial contamination in foods.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Escherichia coli/genética , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico/métodos , DNA/genética , Peroxidases
16.
Front Plant Sci ; 14: 1286699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023907

RESUMO

A previous metabolomic and genome-wide association analysis of maize screened a glucose-6-phosphate 1-epimerase (ZmG6PE) gene, which responds to low-phosphorus (LP) stress and regulates yield in maize's recombinant inbred lines (RILs). However, the relationship of ZmG6PE with phosphorus and yield remained elusive. This study aimed to elucidate the underlying response mechanism of the ZmG6PE gene to LP stress and its consequential impact on maize yield. The analysis indicated that ZmG6PE required the Aldose_epim conserved domain to maintain enzyme activity and localized in the nucleus and cell membrane. The zmg6pe mutants showed decreased biomass and sugar contents but had increased starch content in leaves under LP stress conditions. Combined transcriptome and metabolome analysis showed that LP stress activated plant immune regulation in response to the LP stress through carbon metabolism, amino acid metabolism, and fatty acid metabolism. Notably, LP stress significantly reduced the synthesis of glucose-1-phosphate, mannose-6-phosphate, and ß-alanine-related metabolites and changed the expression of related genes. ZmG6PE regulates LP stress by mediating the expression of ZmSPX6 and ZmPHT1.13. Overall, this study revealed that ZmG6PE affected the number of grains per ear, ear thickness, and ear weight under LP stress, indicating that ZmG6PE participates in the phosphate signaling pathway and affects maize yield-related traits through balancing carbohydrates homeostasis.

17.
Chemosphere ; 344: 140283, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775055

RESUMO

Benzophenone (BP) is found in many popular consumer products, such as cosmetics. BP potential toxicity to humans and aquatic organisms has emerged as an increased concern. In current study, we utilized a zebrafish model to assess BP-induced developmental cardiotoxicity. Following BP exposure, zebrafish embryos exhibited developmental toxicity, including increased mortality, reduced hatchability, delayed yolk sac absorption, and shortened body length. Besides, BP exposure induced cardiac defects in zebrafish embryos, comprising pericardial edema, reduced myocardial contractility and rhythm disturbances, and altered expression levels of cardiac developmental marker genes. Mechanistically, BP exposure disturbed the redox state and increased the level of apoptosis in zebrafish cardiomyocytes. Transcriptional expression levels of Wnt signaling genes, involving lef1, axin2, and ß-catenin, were upregulated after BP treatment. Inhibition of Wnt signaling with IWR-1 could rescue the BP-induced cardiotoxicity in zebrafish. In summary, BP exposure causes cardiotoxicity via upregulation of the Wnt signaling pathway in zebrafish embryos.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Cardiotoxicidade , Embrião não Mamífero/metabolismo , Miócitos Cardíacos
18.
J Hazard Mater ; 459: 132175, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37517235

RESUMO

The increasing use of cosmetics has raised widespread concerns regarding their ingredients. Cysteamine hydrochloride (CSH) is a newly identified allergenic component in cosmetics, and therefore its potential toxicity needs further elucidation. Here, we investigated the in vivo toxicity of CSH during ocular development utilizing a zebrafish model. CSH exposure was linked to smaller eyes, increased vasculature of the fundus and decreased vessel diameter in zebrafish larvae. Moreover, CSH exposure accelerated the process of vascular sprouting and enhanced the proliferation of ocular vascular endothelial cells. Diminished behavior in response to visual stimuli and ocular structural damage in zebrafish larvae after CSH treatment were confirmed by analysis of the photo-visual motor response and pathological examination, respectively. Through transcriptional assays, transgenic fluorescence photography and molecular docking analysis, we determined that CSH inhibited Notch receptor transcription, leading to an aberrant proliferation of ocular vascular endothelial cells mediated by Vegf signaling activation. This process disrupted ocular homeostasis, and induced an inflammatory response with neutrophil accumulation, in addition to the generation of high levels of reactive oxygen species, which in turn promoted the occurrence of apoptotic cells in the eye and ultimately impaired ocular structure and visual function during zebrafish development.


Assuntos
Cisteamina , Peixe-Zebra , Animais , Cisteamina/toxicidade , Células Endoteliais , Simulação de Acoplamento Molecular , Inflamação/induzido quimicamente
19.
Molecules ; 28(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37375249

RESUMO

The large-scale use of sulfonamide antimicrobials in human and veterinary medicine has seriously endangered the ecological environment and human health. The objective of this study was to develop and validate a simple and robust method for the simultaneous determination of seventeen sulfonamides in water using ultra-high performance liquid chromatography-tandem mass spectrometry coupled with fully automated solid-phase extraction. Seventeen isotope-labeled internal standards for sulfonamides were used to correct matrix effects. Several parameters affecting extraction efficiency were systematically optimized, and the enrichment factors were up to 982-1033 and only requiring about 60 min per six samples. Under the optimized conditions, this method manifested good linearity (0.05-100 µg/L), high sensitivity (detection limits: 0.01-0.05 ng/L), and satisfactory recoveries (79-118%) with acceptable relative standard deviations (0.3-14.5%, n = 5). The developed method can be successfully utilized for the determination of 17 sulfonamides in pure water, tap water, river water, and seawater. In total, six and seven sulfonamides were detected in river water and seawater, respectively, with a total concentration of 8.157-29.676 ng/L and 1.683-36.955 ng/L, respectively, and sulfamethoxazole was the predominant congener.


Assuntos
Anti-Infecciosos , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Água , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Sulfanilamida , Anti-Infecciosos/análise , Sulfonamidas/análise , Extração em Fase Sólida/métodos
20.
Fish Shellfish Immunol ; 138: 108849, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37268155

RESUMO

Pexidartinib, a macrophage colony-stimulating factor receptor (CSF-1R) inhibitor, is indicated for the treatment of tendon sheath giant cell tumor (TGCT). However, few studies on the toxicity mechanisms of pexidartinib for embryonic development. In this study, the effects of pexidartinib on embryonic development and immunotoxicity in zebrafish were investigated. Zebrafish embryos at 6 h post fertilization (6 hpf) were exposed to 0, 0.5, 1.0, and 1.5 µM concentrations of pexidartinib, respectively. The results showed that different concentrations of pexidartinib induced the shorter body, decreased heart rate, reduced number of immune cells and increase of apoptotic cells. In addition, we also detected the expression of Wnt signaling pathway and inflammation-related genes, and found that these genes expression were significantly upregulated after pexidartinib treatment. To test the effects of embryonic development and immunotoxicity due to hyperactivation of Wnt signaling after pexidartinib treatment, we used IWR-1, Wnt inhibitor, for rescue. Results show that IWR-1 could not only rescue developmental defects and immune cell number, but also downregulate the high expression of Wnt signaling pathway and inflammation-related caused by pexidartinib. Collectively, our results suggest that pexidartinib induces the developmental toxicity and immunotoxicity in zebrafish embryos through hyperactivation of Wnt signaling, providing a certain reference for the new mechanisms of pexidartinib function.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra , Animais , Peixe-Zebra/genética , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Inflamação/metabolismo , Embrião não Mamífero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA