Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Colloid Interface Sci ; 664: 168-177, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460381

RESUMO

Ammonium vanadate with stable bi-layered structure and superior mass-specific capacity have emerged as competitive cathode materials for aqueous rechargeable zinc-ion batteries (AZIBs). Nevertheless, fragile NH…O bonds and too strong electrostatic interaction by virtue of excessive NH4+ will lead to sluggish Zn2+ ion mobility, further largely affects the electro-chemical performance of ammonium vanadate in AZIBs. The present work incorporates polypyrrole (PPy) to partially replace NH4+ in NH4V4O10 (NVO), resulting in the significantly enlarged interlayers (from 10.1 to 11.9 Å), remarkable electronic conductivity, increased oxygen vacancies and reinforced layered structure. The partial removal of NH4+ will alleviate the irreversible deammoniation to protect the laminate structures from collapse during ion insertion/extraction. The expanded interlayer spacing and the increased oxygen vacancies by the virtue of the introduction of polypyrrole improve the ionic diffusion, enabling exceptional rate performance of NH4V4O10. As expected, the resulting polypyrrole intercalated ammonium vanadate (NVOY) presents a superior discharge capacity of 431.9 mAh g-1 at 0.5 A g-1 and remarkable cycling stability of 219.1 mAh g-1 at 20 A g-1 with 78 % capacity retention after 1500 cycles. The in-situ electrochemical impedance spectroscopy (EIS), in-situ X-ray diffraction (XRD), ex-situ X-ray photoelectron spectroscopy (XPS) and ex-situ high resolution transmission electron microscopy (HR-TEM) analysis investigate a highly reversible intercalation Zn-storage mechanism, and the enhanced the redox kinetics are related to the combined effect of interlayer regulation, high electronic conductivity and oxygen defect engineering by partial substitution NH4+ of PPy incorporation.

2.
Food Chem ; 447: 139013, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38507950

RESUMO

Formaldehyde is known to harm the respiratory, nervous, and digestive systems of people. In this paper, a novel dandelion-like electrocatalyst with core-shell heterostructure arrays were fast self-assembled prepared in situ using copper foam (CF) as support substrate and 2,3,6,7,10,11 hexahydroxy-triphenyl (HHTP) as ligand (Cu(OH)2@Cu3(HHTP)2/CF) by a simple two-step hydrothermal reaction. The 1D Cu(OH)2 nanorods "core" and the 2D π-conjugated conducting metal-organic frameworks (Cu3(HHTP)2cMOF) "shell" with remote delocalized electrons give the dandelion-like heterogeneous catalysts excellent electrochemical activity such as a large specific surface area, high conductivity and a fast electron transfer rate. The Cu(OH)2@Cu3(HHTP)2/CF exhibited excellent electrocatalytic performance for formaldehyde under alkaline conditions with a linear range of 0.2 µmol/L - 125 µmol/L and 125 µmol/L - 8 mmol/L, a detection limit as low as 15.9 nmol/L (S/N = 3), as well as good accuracy, consistency, and durability, and it effectively identified FA in food.


Assuntos
Cobre , Formaldeído , Humanos , Condutividade Elétrica , Transporte de Elétrons , Elétrons
3.
Small ; : e2311520, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299465

RESUMO

LiCoO2 (LCO) cathode materials have attracted significant attention for its potential to provide higher energy density in current Lithium-ion batteries (LIBs). However, the structure and performance degradation are exacerbated by increasing voltage due to the catastrophic reaction between the applied electrolyte and delithiated LCO. The present study focuses on the construction of physically and chemically robust Mg-integrated cathode-electrolyte interface (MCEI) to address this issue, by incorporating Magnesium bis(trifluoromethanesulfonyl)imide (Mg[TFSI]2 ) as an electrolyte additive. During formation cycles, the strong MCEI is formed and maintained its 2 nm thickness throughout long-term cycling. Notably, Mg is detected not only in the robust MCEI, but also imbedded in the surface of the LCO lattice. As a result, the parasitic interfacial side reactions, surface phase reconstruction, particle cracking, Co dissolution and shuttling are considerably suppressed, resulting in long-term cycling stability of LCO up to 4.5 V. Therefore, benefit from the double protection of the strong MCEI, the Li||LCO coin cell and the Ah-level Graphite||LCO pouch cell exhibit high capacity retention by using Mg-electrolyte, which are 88.13% after 200 cycles and 90.4% after 300 cycles, respectively. This work provides a novel approach for the rational design of traditional electrolyte additives.

4.
J Hazard Mater ; 467: 133752, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350320

RESUMO

A remarkably efficient and affordable Fe/Cu bimetallic catalyst featuring a substantial light energy utilization and compatibility with a sizable substrate was developed for Fenton-like reactions aimed at pollutant control. Specifically, a novel strategy was employed to synthesize high-density metal sites (Fe:Cu ≈ 3:1) robustly embedded on polyethylene/polyethylene terephthalate nonwoven fabric (PE/PET NWF) via radiation-induced graft polymerization (RIGP) and subsequent chemical modification, labeled as Fe/Cu-PPAO. Its high effectiveness was demonstrated by degrading 50 mg/L of tetracycline hydrochloride within 30 min in the presence of H2O2 under simulate sunlight irradiation. It was investigated that amidoxime groups regulated the optical gaps and HOMO-LUMO gaps of metal ions to enable the absorption of a broader spectrum light while the Cu2+ facilitated the transfer of electrons between the bimetal ions to achieve an improved reaction path. Furthermore, X-ray absorption fine structure (XAFS) and density functional theory (DFT) calculations further revealed its special complex state and delicate electronic structure between bimetal ions and amidoxime groups. Our study offers a new strategy to synthesize high-density bimetallic sites catalyst for environmental remediation and pushes forward insight into understanding the catalytic mechanism of bimetallic Fenton-like catalysts.

5.
Plant Dis ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197884

RESUMO

Bottle gourd [Lagenaria siceraria (Mol.) Stand] is a widely cultivated succulent crop species. In December 2022, a serious bottle gourd disease occurred in the protected vegetable planting base of Xingguo County, Ganzhou City, Jiangxi Province, China, with 85% of the 2,100 plants having gray mold disease-like symptoms, including gray spots on the infected fruit. They quickly expanded at suitable temperature and humidity, forming a gray mold layer with inward depressions, which spread to the fruit stem causing watery rot, and the flesh turned black and started to rot. To isolate the pathogen, fruits of the diseased plants were surface-disinfected with 75% ethanol for 30 s, immersed in 0.1% HgCl2 for 1 min, rinsed thrice with sterile water, and cultured on a potato-dextrose agar (PDA) medium at 28°C. Mycelia from the diseased tissue were subcultured on fresh PDA medium to obtain pure cultures. After incubation at 25°C for 7 days, olive-green colonies (~2.5 mm·d-1) developed. Cultures developed numerous elliptical and limoniform conidia measuring 2.69~9.79 µm to 2.10~5.92 µm (average 5.62×3.12 µm) (n=20). The morphological characteristics of the pathogen resembled those of Cladosporium spp. Fungal genomic DNA was extracted, and the internal transcribed spacer (ITS), partial translation elongation factor-1 alpha (TEF-1α), and actin (ACT) regions were amplified with primers ITS1/4, TEF-728F/986R, and ACT-512F/783R, respectively, and sequenced (Bensch et al. 2012; Jo et al. 2018). Basic Local Alignment Search Tool analysis (BLAST) revealed that the ITS (accession no. OQ186729), ACT (OQ240962), and TEF-1α (OQ240963) sequences of isolate hjt4 shared the highest similarity (99-100%) with those of Cladosporium tenuissimum (accessions no. OM232068, OM256530, OM256526) (Duccio et al. 2015). A phylogenetic tree of the isolate hjt4 and its close relatives within Cladosporium was constructed using the MEGA X neighbor-joining method. The pathogen was identified as C. tenuissimum based on morphological and molecular characteristics. A specimen (JXAU-H2022982) was deposited at the Herbarium of the College of Agronomy, Jiangxi Agricultural University. To confirm its pathogenicity, seven-day-old healthy bottle gourd fruits were disinfected with 75% ethanol, 1 mm-deep wounds were made with sterilized scalpels, and the plants were inoculated with PDA plugs (0.8 cm in diameter) containing actively growing mycelia of isolate hjt4. Plants inoculated with sterile PDA plugs served as controls. Each group contained three fruits, and the experiment was performed in triplicate. All fruits were incubated in a biochemical incubator at 28°C. After 3 days, the fruit surface shrank, and the flesh turned to a black colour and rotten, which rapidly spread to the branches. Control fruits did not develop any symptoms. Reisolated colonies showed the same morphological traits as those of the inoculation isolates, whereas no target colonies were isolated from the control fruits. The pathogen was previously reported to cause leaf blight disease in Coriandrum sativum (Zhou et al. 2022) and sooty spots on Cape gooseberry (Miyake et al. 2022), among others. To our knowledge, this is the first report of gray mold disease caused by C. tenuissimum on bottle gourd in China. The findings provide an important foundation for monitoring and controlling the spread of this disease.

6.
Angew Chem Int Ed Engl ; 63(7): e202316012, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38164694

RESUMO

Chromium-catalyzed enantioselective Nozaki-Hiyama-Kishi (NHK) reaction represents one of the most powerful approaches for the formation of chiral carbon-heteroatom bond. However, the construction of sterically encumbered tetrasubstituted stereocenter through NHK reaction still posts a significant challenge. Herein, we disclose a cobalt-catalyzed aza-NHK reaction of ketimine with alkenyl halide to provide a convenient synthetic approach for the manufacture of enantioenriched tetrasubstituted α-vinylic amino acid. This protocol exhibits excellent functional group tolerance with excellent 99 % ee in most cases. Additionally, this asymmetric reductive method is also applicable to the aldimine to access the trisubstituted stereogenic centers.

7.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068940

RESUMO

The principal difference between hydroponics and other substrate cultivation methods is the flowing liquid hydroponic cultivation substrate. Our previous studies have revealed that a suitable flowing environment of nutrient solution promoted root development and plant growth, while an excess flow environment was unfavorable for plants. To explain the thigmomorphogenetic response of excess flow-induced metabolic changes, six groups of lettuce (Lactuca sativa L.), including two flow conditions and three time periods, were grown. Compared with the plants without flow, the plants with flow showed decreased root fresh weight, total root length, root surface area, and root volume but increased average root diameter and root density. The roots with flow had more upregulated metabolites than those without flow, suggesting that the flow may trigger metabolic synthesis and activity. Seventy-nine common differential metabolites among six groups were screened, and enrichment analysis showed the most significant enrichment in the arginine biosynthesis pathway. Arginine was present in all the groups and exhibited greater concentrations in roots with flow than without flow. It can be speculated from the results that a high-flowing environment of nutrient solution promotes arginine synthesis, resulting in changes in root morphology. The findings provide insights on root thigmomorphogenesis affected by its growing conditions and help understand how plants respond to environmental mechanical forces.


Assuntos
Plantas , Hidroponia/métodos , Nutrientes , Arginina
8.
Natl Sci Rev ; 10(12): nwad252, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37941734

RESUMO

High energy density and high safety are incompatible with each other in a lithium battery, which challenges today's energy storage and power applications. Ni-rich layered transition metal oxides (NMCs) have been identified as the primary cathode candidate for powering next-generation electric vehicles and have been extensively studied in the last two decades, leading to the fast growth of their market share, including both polycrystalline and single-crystal NMC cathodes. Single-crystal NMCs appear to be superior to polycrystalline NMCs, especially at low Ni content (≤60%). However, Ni-rich single-crystal NMC cathodes experience even faster capacity decay than polycrystalline NMC cathodes, rendering them unsuitable for practical application. Accordingly, this work will systematically review the attenuation mechanism of single-crystal NMCs and generate fresh insights into valuable research pathways. This perspective will provide a direction for the development of Ni-rich single-crystal NMC cathodes.

9.
Clin Chim Acta ; 551: 117616, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884118

RESUMO

BACKGROUND: Oxidized lipids are essential bioactive lipid mediators generated during infection that regulate oxidative stress and the inflammatory response, but their signatures in patients with sepsis-associated acute kidney injury (SA-AKI) are poorly understood. This study analyzed the oxidative lipidomics of plasma from patients with SA-AKI to reveal the underlying biomarkers and pathophysiological mechanisms involved in sepsis. MATERIALS: A total of 67 patients with SA-AKI and 20 age- and sex-matched healthy controls (HCs) participated in this prospective cohort study. Among the patients with SA-AKI, 14 cases had stage I-II AKI and 53 cases had stage III AKI. Oxidative lipidomic analysis of plasma samples was conducted using ultra performance liquid chromatography coupled with tandem mass spectrometric (UPLC-MS /MS) detection. RESULTS: Among 21 kinds of differentially oxidized lipids, 5(S),12(S)-DiHETE, 5-isoPGF2VI, 5,6-DiHETrE, 11,12-EET and 9,10-DiHOME showed the best performance. The prediction model incorporating them has shown highly sensitive and specific in distinguishing different stages of SA-AKI from HCs. The annotation of Kyoto Encyclopedia of Genes and Genomes illustrated that the overall downregulation of vascular smooth muscle contraction was closely related to the pathophysiological mechanism of SA-AKI. CONCLUSION: This study revealed alterations in the characteristic oxidized lipids in the plasma of SA-AKI patients, and these lipids had high diagnostic efficiency and potential targeted intervention value for SA-AKI.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Lipidômica , Estudos Prospectivos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Sepse/complicações , Estresse Oxidativo , Lipídeos
10.
ACS Appl Mater Interfaces ; 15(39): 46347-46356, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733928

RESUMO

Flexible pressure sensors can be used in human-computer interaction and wearable electronic devices, but one main challenge is to fabricate capacitive sensors with a wide pressure range and high sensitivity. Here, we designed a capacitive pressure sensor based on a bionic cheetah leg microstructure, validated the benefits of the bionic microstructure design, and optimized the structural feature parameters using 3D printing technology. The pressure sensor inspired by the cheetah leg shape has a high sensitivity (0.75 kPa-1), a wide linear sensing range (0-280 kPa), a fast response time of roughly 80 ms, and outstanding durability (24,000 cycles). Furthermore, the sensor can recognize a finger-operated mouse, monitor human motion, and transmit Morse code information. This work demonstrates that bionic capacitive pressure sensors hold considerable promise for use in wearable devices.

11.
Anal Chim Acta ; 1276: 341618, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573108

RESUMO

Due to their superparamagnetism and enzyme-like activity, iron oxide (Fe3O4) nanozymes can be readily used for sample pretreatment and the generation of detection signals, and have, thus, attracted much attention in the field of bioanalysis and diagnosis. However, the low catalytic activity of Fe3O4 nanozymes does reduce the sensitivity of Fe3O4-based methods, limiting their application. In this study, Fe3O4@Cu@poly(pyrrole-2-carboxylic acid) yolk-shell nanozymes (Fe3O4@Cu@PCPy YSNs) were synthesized using a facile approach and selective chemical etching technology. Compared with Fe3O4 nanozymes, the Fe3O4@Cu@PCPy YSNs demonstrated a three-fold increase in the peroxidase-like activity, good dispersity and strong superparamagnetism. In addition, the flower-shaped structure of aptamer-complementary strand (Apt-CS) conjugates was designed on the surface of the Fe3O4@Cu@PCPy YSNs, which effectively inhibited their peroxidase-like activity by creating a physical barrier that hindered the access of substrates to the center of the Fe3O4@Cu@PCPy YSNs. Based on this principle, a robust and facile colorimetric aptasensor was developed for detecting Salmonella Typhimurium. The flower-shaped Apt-CS were dissociated in the presence of S. Typhimurium, promoting the recovery of Fe3O4@Cu@PCPy YSN catalytic activity. Under optimized conditions, this proposed aptasensor successfully detected S. Typhimurium in a linear range of 3 to 3 × 106 CFU/mL, achieving a detection limit of 1 CFU/mL. Finally, the feasibility of this novel aptasensor was further validated by three actual samples, with recoveries of between 84.3% and 102%, thereby demonstrating the huge potential of the proposed aptasensor for detecting S. Typhimurium in foods.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Salmonella typhimurium , Colorimetria , Aptâmeros de Nucleotídeos/química , Peroxidases , Limite de Detecção , Técnicas Biossensoriais/métodos
12.
J Colloid Interface Sci ; 652(Pt A): 529-539, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37607415

RESUMO

Achieving practical applications of PEO-based composite solid electrolyte (CPE) batteries requires the precise design of filler structures at the molecular level to form stable composite interfacial phases, which in turn improve the conductivity of Li+ and inhibit the nucleation growth of lithium dendrites. Some functional fillers suffer from severe agglomeration due to poor compatibility with the polymer base or grain boundary migration, resulting in limited improvement in cell performance. In this paper, ILs@KAP1 is reported as a filler to enhance the performance of PEO-based batteries. Thereinto, the hypercrosslinked phosphorus ligand polymer-containing KAP1, designed at the molecular level, has an abundant porous structure, hydrogen bonding network, and a rigid skeleton structure of benzene rings. These can be used both to improve the flammability with PEO-based and to reduce the crystallinity of the polymer electrolyte. Ionic liquids (ILs) are encapsulated in the nanochannels of KAP1, and thus a 3D Li+ conducting framework could be formed. In this case, it could not only facilitate the wettability of the contact interface with the electrode, significantly promoting its compatibility and providing a fast Li+ transport path, but also facilitate the formation of LiF, Li3N and Li2O rich SEI components, further fostering the uniform deposition/exfoliation of lithium. The LFP||CPE||Li battery assembled with ILs@KAP1-PEO-CPE has a high initial discharge specific capacity about 156 mAh/g at 1C and a remaining capacity about 121.8 mAh/g after 300 cycles (capacity retention of 78.07%).

13.
Food Chem ; 426: 136517, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348396

RESUMO

Hydrogen peroxide is used widely as a disinfection or bleaching additive during processing in the food industry. However, excessive residues of hydrogen peroxide in food have serious human health implications. In the present study, a novel electrochemical sensing electrode (MnO2/ZIF-67@LDH) with hierarchical porous sugar gourd-like structure was fabricated through a multi-step hydrothermal method using ZIF as the precursor. The unique porous nanocage structure of the sensing electrode provided multidimensional charge transfer channels and accelerated the electron transfer rate. As a hydrogen peroxide sensor, the electrode had two detection linear ranges of 1×10-3-4 mmol L-1 and 4-8 mmol L-1, and the detection limit was 0.26 µmol L-1. The MnO2/ZIF-67@LDH sensor was also applied to determine the content of hydrogen peroxide in actual food samples of juice and milk, and satisfactory recovery were achieved. The present study provides a novel and effective design strategy for the construction of electrochemical sensing electrodes.


Assuntos
Nanotubos , Açúcares , Humanos , Compostos de Manganês/química , Peróxido de Hidrogênio/química , Porosidade , Óxidos/química , Verduras , Eletrodos , Hidróxidos , Técnicas Eletroquímicas/métodos
14.
J Agric Food Chem ; 71(1): 710-720, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574360

RESUMO

Short-term nitrogen limitation and continuous lighting (red/blue = 3:1) were applied individually and in combination to butterhead and red oak leaf lettuce for 1, 2, or 3 days before harvest to assess their effects on improving the nutritional value and sweet taste and reducing nitrate content and bitterness of lettuce. The results suggested that a 3-day nitrogen limitation combined with continuous lighting reduced the lettuce content of nitrate and sesquiterpene lactones and improved the quantities of soluble sugar, soluble protein, anthocyanins, and phenolic compounds without reducing the fresh weight of lettuce. In addition, in vitro simulated digestion results suggested that the 3-day nitrogen limitation combined with continuous lighting significantly improved the sweetness and reduced the bitterness of lettuce compared to the control. In conclusion, nitrogen limitation combined with continuous lighting for 3 days before harvest effectively enhanced the quality and taste of lettuce, showing great potential for its use in hydroponic lettuce production.


Assuntos
Lactuca , Iluminação , Lactuca/metabolismo , Nitratos/metabolismo , Hidroponia , Nitrogênio/metabolismo , Antocianinas/metabolismo , Folhas de Planta/metabolismo
15.
ACS Appl Mater Interfaces ; 14(48): 53788-53797, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36441596

RESUMO

Low cycling Coulombic efficiency (CE) and messy Li dendrite growth problems have greatly hindered the development of anode-free Li-metal batteries (AFLBs). Thus, functional electrolytes for uniform lithium deposition and lithium/electrolyte side reaction suppression are desired. Here, we report a locally fluorinated electrolyte (LFE) medium layer surrounding Cu foils to tailor the chemical compositions of the solid-electrolyte interphase (SEI) in AFLBs for inhibiting the immoderate Li dendrite growth and to suppress the interfacial reaction. This LFE consists of highly concentrated LiTFSI dissolved in a fluoroethylene carbonate and/or succinonitrile plastic mixture. The CE of Cu||LiNi0.8Co0.1Mn0.1O2 (NCM811) AFLB increased to a high level of 99% as envisaged, and the cycling ability was also highly improved. These improvements are facilitated by the formation of a uniform, dense, and LiF-rich SEI. LiF possesses high interfacial energy at the LiF/Li interface, resulting in a more uniform Li deposition process as proved by density functional theory (DFT) calculation results. This work provides a simple yet utility tech for the enhancement of future high-energy-density AFLBs.

16.
Plant Dis ; 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36366836

RESUMO

The variegated leaves and fragrant flowers of Daphne odora var. marginata Mak. make it a popular garden plant. In May 2020, we found diseased D. odora plants in a greenhouse at the Ganzhou Vegetable and Flower Research Institute, in southeast China; 72% of 1800 plants had Phytophthora blight-like symptoms-shrunken stems, black withered branches, wilted and dropped leaves (Fig 1a), and rotted and dark green roots. The root and stem tissue surfaces were disinfected with 75% ethanol for 30 s followed by 0.1% HgCl2 for 1 min, rinsed thrice with sterile water, and cultured on potato-dextrose agar (PDA) medium at 25°C. Mycelia from the diseased tissue were subcultured on fresh PDA medium, providing three colonies. White colonies (~4.1 mm) were formed after 10 days at 25°C (Fig 1b). Sporangia and chlamydospores were induced by placing actively growing mycelia on PDA medium at 25°C for ~30 days and then at 45°C for ~3 days. Sporangia were ovoid to spherical and 19.33 × 20.99 µm in size (Fig 1c), whereas chlamydospores were spherical and 15.68 × 16.10 µm in size (Fig 1d). All three colonies resembled Phytophthora spp. Genomic DNA was extracted from isolates using the Ezup Column Fungi Genomic DNA Purification Kit (Sangon Biotech [Shanghai] Co. Ltd.), and rDNA-ITS and ß-tubulin were amplified and sequenced. BLAST analysis (GenBank) revealed that the ITS (Accession No. MZ676071) and ß-tubulin (MZ748503) sequences of isolates shared the highest similarity (99-100%) with those of Phytophthora nicotianae (Duccio et al. 2015). A phylogenetic tree of the relationship between our isolate hjt3 and its close relatives within the P. nicotianae species was constructed using the MEGA X neighbor-joining method (Fig 2). The pathogen was identified as P. nicotianae based on morphological and molecular characteristics. Sequencing results of the three samples were consistent, all indicating P. nicotianae. A specimen (JXAU-H2020245) was deposited in the Herbarium of the College of Agronomy, Jiangxi Agricultural University. To confirm pathogenicity, 9-month-old healthy D. odora plants were used for stem and soil inoculation. Stems were cut ~5 cm from the soil with sterilized scalpels and inoculated with 0.8 cm diameter PDA plugs containing actively growing mycelia of isolate hjt3. The soil was sterilized and 0.8 cm PDA plugs containing actively growing mycelia were buried in the soil at ~5 cm; the mycelia were in contact with the roots. Plants in both groups were treated equally; those inoculated with sterile PDA plugs served as controls. There were six plants in each group, with each experiment performed in triplicate. All plants were incubated in a greenhouse at 25-28°C. The stems shrank and began to rot rapidly after 7 days (Fig 3) and the branches turned black and withered within 2 weeks. After soil inoculation, the stems of the inoculated plants blackened and rotted in ~20 days (Fig 4) and the roots rotted and turned dark green (Fig 5). These symptoms rapidly spread to the branches. The control plants did not exhibit any symptoms. Reisolated colonies showed the same morphological traits as the isolates used for inoculation; no target colonies were isolated from the control plants. Phytophthora blight caused by P. nicotianae on D. odora has been reported in Italy (Garibaldi A, 2009) and Korea (Kwon et al. 2005). This is the first detection in China. Therefore, Phytophthora blight on D. odora caused by P. nicotianae should be monitored and controlled to promote the development of the D. odora industry.

17.
ACS Appl Mater Interfaces ; 14(15): 17405-17414, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35388687

RESUMO

Despite cobalt (Co)-free/nickel (Ni)-rich layered oxides being considered as one of the promising cathode materials due to their high specific capacity, their highly reactive surface still hinders practical application. Herein, a polyimide/polyvinylpyrrolidone (PI/PVP, denoted as PP) coating layer is demonstrated as dual protection for the LiNi0.96Mg0.02Ti0.02O2 (NMT) cathode material to suppress surface contamination against moist air and to prevent unwanted interfacial side reactions during cycling. The PP-coated NMT (PP@NMT) preserves a relatively clean surface with the bare generation of lithium residues, structural degradation, and gas evolution even after exposure to air with ∼30% humidity for 2 weeks compared to the bare NMT. In addition, the exposed PP@NMT significantly enhances the electrochemical performance of graphite||NMT cells by preventing byproducts and structural distortion. Moreover, the exposed PP@NMT achieves a high capacity retention of 86.7% after 500 cycles using an advanced localized high-concentration electrolyte. This work demonstrates promising protection of Co-free/Ni-rich layered cathodes for their practical usage even after exposure to moist air.

19.
Front Plant Sci ; 13: 804368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185982

RESUMO

Seleno-amino acids are safe, health-promoting compounds for humans. Numerous studies have focused on the forms and metabolism of seleno-amino acids in vegetables. Based on research progress on seleno-amino acids, we provide insights into the production of selenium-enriched vegetables with high seleno-amino acids contents. To ensure safe and effective intake of selenium, several issues need to be addressed, including (1) how to improve the accumulation of seleno-amino acids and (2) how to control the total selenium and seleno-amino acids contents in vegetables. The combined use of plant factories with artificial lighting and multiple analytical technologies may help to resolve these issues. Moreover, we propose a Precise Control of Selenium Content production system, which has the potential to produce vegetables with specified amounts of selenium and high proportions of seleno-amino acids.

20.
ACS Appl Mater Interfaces ; 13(41): 48745-48752, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34622658

RESUMO

High-surface-area carbon (HSAC) has been regarded as one of the most promising anode materials for sodium-ion batteries. However, it generally suffers from low initial Coulombic efficiency (ICE), which is closely related to the formation process of a solid electrolyte interface (SEI). Herein, the impact of different electrolyte salts on the electrochemical performance and SEI formation of a commercial HSAC anode is studied. It is found that the use of NaCF3SO3 enables much higher ICE (69.28%) and reversible capacity (283 mA h g-1) of the HSAC anode compared with the NaPF6 electrolyte (59.65%, 243 mA h g-1). Through comprehensive characterizations, the improvement in electrochemical performance facilitated by NaCF3SO3 could be attributed to the reduced amount of NaxC and the thinner SEI formed on the surface of HSAC during the initial cycle, which not only provides extra active sites for Na+ storage but also contributes to the promoted ICE. This work not only provides a deeper understanding of the role of electrolyte salt in SEI formation in the HSAC anode but also proposes a new method to further promote the ICE of the HSAC anode in sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA