Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(16): 7539-7545, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37561835

RESUMO

Understanding the collective behavior of the quasiparticles in solid-state systems underpins the field of nonvolatile electronics, including the opportunity to control many-body effects for well-desired physical phenomena and their applications. Hexagonal boron nitride (hBN) is a wide-energy-bandgap semiconductor, showing immense potential as a platform for low-dimensional device heterostructures. It is an inert dielectric used for gated devices, having a negligible orbital hybridization when placed in contact with other systems. Despite its inertness, we discover a large electron mass enhancement in few-layer hBN affecting the lifetime of the π-band states. We show that the renormalization is phonon-mediated and consistent with both single- and multiple-phonon scattering events. Our findings thus unveil a so-far unknown many-body state in a wide-bandgap insulator, having important implications for devices using hBN as one of their building blocks.

2.
Sci Rep ; 11(1): 3414, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564022

RESUMO

Intensive efforts have been devoted to surface Ullmann-like coupling in recent years, due to its appealing success towards on-surface synthesis of tailor-made nanostructures. While attentions were mostly drawn on metallic substrates, however, Ullmann dehalogenation and coupling reaction on semimetal surfaces has been seldom addressed. Herein, we demonstrate the self-assembly of 2, 7-dibromopyrene (Br2Py) and the well controllable dehalogenation reaction of Br2Py on the Bi(111)-Ag substrate with a combination of scanning tunnelling microscopy (STM) and density functional theory calculations (DFT). By elaborately investigating the reaction path and formed organic nanostructures, it is revealed that the pristinely inert bismuth layer supported on the silver substrate can initiate Ullmann-like coupling in a desired manner by getting alloyed with Ag atoms underneath, while side products have not been discovered. By clarifying the pristine nature of Bi-Ag(111) and Ullmann-like reaction mechanisms, our report proposes an ideal template for thoroughly exploring dehalogenative coupling reaction mechanisms with atomic insights and on-surface synthesis of carbon-based architectures.

3.
ACS Omega ; 4(19): 17939-17946, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720497

RESUMO

Cerium oxide has constantly attracted intense attention during the past decade both in research and industry as an appealing catalyst or a noninert support for catalysts, for instance, in the water-gas shift reaction and hydrogenation of the ketone group. Herein, the cerium oxide surface has been chosen to investigate the adsorption and decomposition behaviors of the N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxdiimide (EP-PTCDI) molecule by photoelectron spectroscopy. As expected, EP-PTCDI molecules self-assemble on the cerium oxide surface comprising both trivalent and tetravalent cerium at room temperature. Interestingly, the EP-PTCDI molecule exhibits selective adsorption on cerium oxide after the heating treatment. It was found that the ketone group of EP-PTCDI first undergoes hydrogenation after annealing to 400 °C, which is probably related to the fact that high temperature annealing provides sufficient thermal energy to trigger the reaction between the ketone group and trivalent cerium. Furthermore, EP-PTCDI molecules are discovered to start to decompose hierarchically on the ceria substrate from annealing at 400 °C due to the strong molecule-substrate interaction and the effective catalysis by the trivalent cerium, whereas the decomposition sequence of functional groups is revealed to be, first, the ethyl propyl group (-C5H9), followed by the hydrogenated ketone (alcohols) group. Finally, our study may provide a new platform for the fundamental understanding of complex organic reactions on the cerium oxide surface.

4.
Materials (Basel) ; 12(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703436

RESUMO

: Surface science is an interdisciplinary field involving various subjects such as physics, chemistry, materials, biology and so on, and it plays an increasingly momentous role in both fundamental research and industrial applications. Despite the encouraging progress in characterizing surface/interface nanostructures with atomic and orbital precision under ultra-high-vacuum (UHV) conditions, investigating in situ reactions/processes occurring at the surface/interface under operando conditions becomes a crucial challenge in the field of surface catalysis and surface electrochemistry. Promoted by such pressing demands, high-pressure scanning tunneling microscopy (HP-STM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS), for example, have been designed to conduct measurements under operando conditions on the basis of conventional scanning tunneling microscopy (STM) and photoemission spectroscopy, which are proving to become powerful techniques to study various heterogeneous catalytic reactions on the surface. This report reviews the development of HP-STM and AP-XPS facilities and the application of HP-STM and AP-XPS on fine investigations of heterogeneous catalytic reactions via evolutions of both surface morphology and electronic structures, including dehydrogenation, CO oxidation on metal-based substrates, and so on. In the end, a perspective is also given regarding the combination of in situ X-ray photoelectron spectroscopy (XPS) and STM towards the identification of the structure-performance relationship.

5.
Chemphyschem ; 20(18): 2376-2381, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31059163

RESUMO

Fundamental understanding of the bonding motifs that elaborately mediate the formation of supramolecular nanostructures is essential for the rational design of stable artificial organic architectures. Herein, the structural transformation of the adsorption complex of 2, 7-dibromopyrene (Br2 Py) on the Au(111) surface has been investigated by scanning tunnelling microscopy combined with X-ray photoemission spectroscopy and density function theory calculations. In the initial stage of self-assembly, well ordered patterns are formed in the manner of extended supramolecular structures balanced by intermolecular halogen bonding motifs, whilst the Au(111) reconstruction is still fairly visible. Subsequent thermal annealing promotes the dehalogenation and on-surface Ullmann coupling, and polymerized oligomers are consequently constructed. Interestingly, such polymerized chains are still stably mediated by the halogen bonding motif via dissociated Br atoms which are revealed to be absorbed on the bridge site of Au(111), while the number of halogen bonds increases significantly from self-assembly to Ullmann coupling polymerization, indicating that the halogen bonding motif contributes significantly to the extended one-dimensional polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA