Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
JACS Au ; 4(9): 3400-3412, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39328772

RESUMO

Perovskite solar cells (PSCs) are recognized as one of the most promising next-generation photovoltaics, primarily due to their exceptional power conversion efficiency, ease of processing, and cost-effectiveness. Despite these advantages, challenges remain in achieving high-quality films and ensuring the long-term stability of PSCs, which hinder their widespread commercialization. Polymers, characterized by multifunctional groups, superior thermal stability, flexible long chains, and cross-linking capabilities, offer significant potential to enhance the performance and reliability of PSCs. This review comprehensively presents the multifaceted roles that polymers play in PSCs. Through carefully controlling interactions between polymers and perovskites, crucial aspects such as film crystallization kinetics, carrier transport process, ion migration issues, and mechanical properties under bending can be effectively regulated to maximize the device performance. Furthermore, the hydrophobic properties and strong chelated cross-linking networks of polymers significantly enhance the stability of PSCs under various environmental conditions while effectively mitigating lead leakage, thereby addressing environmental concerns and long-term durability. Moreover, this Perspective identifies potential pathways for further advancing polymer-based strategies in PSC applications.

2.
J Am Chem Soc ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324482

RESUMO

The activity of the electrocatalytic CO2 reduction reaction (CO2RR) is substantially affected by alkali metal cations (AM+) in electrolytes, yet the underlying mechanism is still controversial. Here, we employed electrochemical scanning tunneling microscopy and in situ observed Au(111) surface roughening in AM+ electrolytes during cathodic polarization. The roughened surface is highly active for catalyzing the CO2RR due to the formation of surface low-coordinated Au atoms. The critical potential for surface roughening follows the order Cs+ > Rb+ > K+ > Na+ > Li+, and the surface proportion of roughened area decreases in the order of Cs+ > Rb+ > K+ > Na+ > Li+. Electrochemical CO2RR measurements demonstrate that the catalytic activity strongly correlates with the surface roughness. Furthermore, we found that AM+ is critical for surface roughening to occur. The results unveil the unrecognized effect of AM+ on the surface structural evolution and elucidate that the AM+-induced formation of surface high-activity sites contributes to the enhanced CO2RR in large AM+ electrolytes.

3.
J Colloid Interface Sci ; 678(Pt C): 261-271, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39298977

RESUMO

Developing heterogeneous catalysts with exceptional catalytic activity over formic acid (HCOOH, FA) dehydrogenation is imperative to employ FA as an effective hydrogen (H2) carrier. In this work, ultrasmall (1.4 nm) and well-dispersed PdIr nanoparticles (NPs) immobilized on amine-functionalized yolk-shell mesoporous silica nanospheres (YSMSNs) with radially oriented mesoporous channels have been synthesized by a co-reduction strategy. The optimized catalyst Pd4Ir1/YSMSNs-NH2 (Pd/Ir molar ratio = 4:1) exhibited a remarkable turnover frequency (TOF) of 5818 h-1 and remarkable stability at 50 °C with the addition of sodium formate (SF), resulting in complete FA conversion and H2 selectivity, exceeding most of the solid heterogeneous catalysts in previous reports under similar circumstances. Kinetic isotope effect (KIE) exploration indicates the cleavage of the CH bond is regarded as the rate-determining step (RDS) during the FA dehydrogenation process. Such excellent catalytic properties arise from the ultrafine and well-dispersed PdIr NPs supported on the nanosphere support YSMSNs-NH2, the electronic synergistic effect of PdIr alloy NPs, and the strong metal-support interaction (MSI) effect between the introduced PdIr NPs and YSMSNs-NH2 support. This work offers a new paradigm for exploiting the highly effective silica-supported Pd-based heterogeneous catalysts over the dehydrogenation of FA.

4.
Angew Chem Int Ed Engl ; : e202413429, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252053

RESUMO

The lanthanide contraction involves a reduction in atomic radius among f-block elements below the expected level. A similar contraction is observed in group-16 elements. The atomic radius of Se (117 pm) is slightly larger than that of S (104 pm) arising from the presence of d electrons, compared to the significant increase in atomic radius from O (73 pm) to S. This lanthanide-like contraction contributes to Se's robust oxidative resistance. Here we report a selective oxidation strategy utilizing Se's strong antioxidative property to remove coexisting narrow-bandgap Te impurities from Se feedstocks. This strategy selectively oxidizes volatile Te impurities into involatile TeO2 that remains in the evaporation source, while only volatile Se deposits onto the substrate during the thermal-evaporation deposition process. This enables the fabrication of high-purity Se films possessing a wide bandgap of 1.88 eV, ideally suited to the optimal bandgap for indoor photovoltaics (IPVs). The resulting Se photovoltaics exhibit an efficiency of 20.1% under 1000-lux indoor illumination, outperforming market-dominant amorphous silicon and all types of lead-free perovskite IPVs. Unencapsulated Se devices show no efficiency degradation after 20,000 hours of storage in ambient atmosphere.

5.
J Am Chem Soc ; 146(33): 23625-23632, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39120638

RESUMO

The interfacial species-built local environments on Cu surfaces impact the CO2 electroreduction process significantly in producing value-added multicarbon (C2+) products. However, intricate interfacial dynamics leads to a challenge in understanding how these species affect the process. Herein, with ab initio molecular dynamics (AIMD) and finite element method (FEM) simulations, we reveal that the highly concentrated interfacial species, including the *CO, hydroxide, and K+, could synergistically promote the C-C coupling on the one-dimensional (1D) porous hollow structure regulated interfacial environment. The Cu-Ag tandem catalyst was then synthesized with the as-designed structure, exhibiting a high C2+ Faradaic efficiency of 76.0% with a partial current density of 380.0 mA cm-2 in near-neutral electrolytes. Furthermore, in situ Raman spectra validate that the 1D porous structure regulates the concentration of interfacial CO intermediates and ions to increase *CO coverage, local pH value, and ionic field, promoting the CO2-to-C2+ activity. These results provide insights into the design of practical ECR electrocatalysts by regulating interfacial species-induced local environments.

6.
J Colloid Interface Sci ; 673: 997-1006, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39002361

RESUMO

The highly dispersed ultrasmall palladium nanoparticles (Pd NPs) (1.7 nm) were successfully immobilized on a N-containing metal-organic framework (MOF, DUT-67-PZDC) using a co-reduction method, and it is used as an excellent catalyst for formic acid dehydrogenation (FAD). The optimized catalyst Pd/DUT-67-PZDC(10, 10 wt% Pd loading) shows 100% hydrogen (H2) selectivity and formic acid (FA) conversion at 60 °C, and the commendable initial turnover frequency (TOF) values of 2572 h-1 with the sodium formate (SF) as an additive and 1059 h-1 even without SF, which is better than most reported MOF supported Pd monometallic heterogeneous catalysts. The activation energy (Ea) of FAD is 43.2 KJ/mol, which is lower than most heterogeneous catalysts. In addition, the optimized catalyst Pd/DUT-67-PZDC(10) maintained good stability over five consecutive runs, demonstrating only minimal decline in catalytic activity. The outstanding catalytic performance could be ascribed to the synergistic corporations of the unique structure of DUT-67-PZDC carrier with hierarchical pore characteristic, the metal-support interaction (MSI) between the active Pd NPs and DUT-67-PZDC, the highly dispersed Pd NPs with ultrafine size serve as the catalytic active site, as well as the N sites on the support could act as the proton buffers. This work provides a new paradigm for the efficient H2 production of FAD by constructing highly active heterogeneous Pd-based catalysts using MOF supports.

7.
ACS Appl Mater Interfaces ; 16(32): 42352-42362, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39080825

RESUMO

To enhance the efficiency of oxygen reduction reaction (ORR) catalysts, precise control over the adsorption/desorption energy barriers of oxygen intermediates at atomically dispersed Fe-N-C sites is essential yet challenging. Addressing this, we employed a pyrolysis approach using a nitrogen-containing polymer to fabricate Fe single-atom (SA) catalysts embedded in a pyridinic-N enriched carbon matrix. This synthesis strategy yielded Fe SAs that demonstrated a superior electrochemical ORR performance, evidenced by an impressive half-wave potential of 0.941 V and a high limiting current density of 5.72 mA/cm2. Moreover, when applied in homemade Zn-air batteries, this premier catalyst exhibited exceptional specific capacity (720 mAh/gZn), peak power density (253 mW/cm2), and notable long-term stability. Theoretical insights revealed that the increased pyridinic-N content in the catalyst facilitated efficient electron transfer from N atoms to the Fe active sites, thus fine-tuning the d-band center and effectively controlling the adsorption energy barrier of *OH species. These mechanisms synergistically improve the ORR performance. Crucially, this fabrication method shows promise for adaptation to other transition metal-based SAs, including Co, Ni, and Cu, potentially establishing a versatile synthesis route for developing atomically dispersed catalyst systems in future applications.

8.
Inorg Chem ; 63(28): 13100-13109, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38953738

RESUMO

Rechargeable aqueous zinc-ion batteries (AZIBs) have developed into one of the most attractive materials for large-scale energy storage owing to their advantages such as high energy density, low cost, and environmental friendliness. Nevertheless, the sluggish diffusion kinetics and inherent impoverished conductivity affect their practical application. Herein, the ß-MnO2 composited with carbon nanotubes (CNT@M) is prepared through a simple hydrothermal approach as a high-performance cathode for AZIBs. The CNT@M electrode exhibits excellent cycling stability, in which the maximum specific discharge capacity is 259 mA h g-1 at 3 A g-1, and there is still 220 mA h g-1 after 2000 cycles. The specific capacity is obviously better than that of ß-MnO2 (32 mA h g-1 after 2000 cycles). The outstanding electrochemical performance of the battery is inseparable from the structural framework of CNT and inherent high conductivity. Furthermore, CNT@M can form a complex conductive network based on CNTs to provide excellent ion diffusion and charge transfer. Therefore, the active material can maintain a long-term cycle and achieve stable capacity retention. This research provides a reasonable solution for the reliable conception of Mn-based electrodes and indicates its potential application in high-performance AZIB cathode materials.

9.
Phys Chem Chem Phys ; 26(30): 20684-20689, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39041218

RESUMO

The highly localized Fe d orbital in ion phthalocyanine (FePc)-based molecular catalysts significantly hinders their electrocatalytic nitrogen reduction reaction (eNRR) performance. Herein, we theoretically designed a series of FePc-based molecules with adjacent metal phthalocyanine sites to form an asymmetric delocalized electronic structure on Fe centers, promoting the catalytic activity and lowering the overpotential of the eNRR, as well as suppressing the hydrogen evolution reaction (HER) side reaction.

10.
Angew Chem Int Ed Engl ; 63(39): e202409763, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38954763

RESUMO

Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi -1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.

11.
J Cancer Res Clin Oncol ; 150(5): 239, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713252

RESUMO

PURPOSE: Multiple myeloma (MM) is an incurable hematological malignancy characterized by clonal proliferation of malignant plasma B cells in bone marrow, and its pathogenesis remains unknown. The aim of this study was to determine the role of kinesin family member 22 (KIF22) in MM and elucidate its molecular mechanism. METHODS: The expression of KIF22 was detected in MM patients based upon the public datasets and clinical samples. Then, in vitro assays were performed to investigate the biological function of KIF22 in MM cell lines, and subcutaneous xenograft models in nude mice were conducted in vivo. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay were used to determine the mechanism of KIF22-mediated regulation. RESULTS: The results demonstrated that the expression of KIF22 in MM patients was associated with several clinical features, including gender (P = 0.016), LDH (P < 0.001), ß2-MG (P = 0.003), percentage of tumor cells (BM) (P = 0.002) and poor prognosis (P < 0.0001). Furthermore, changing the expression of KIF22 mainly influenced the cell proliferation in vitro and tumor growth in vivo, and caused G2/M phase cell cycle dysfunction. Mechanically, KIF22 directly transcriptionally regulated cell division cycle 25C (CDC25C) by binding its promoter and indirectly influenced CDC25C expression by regulating the ERK pathway. KIF22 also regulated CDC25C/CDK1/cyclinB1 pathway. CONCLUSION: KIF22 could promote cell proliferation and cell cycle progression by transcriptionally regulating CDC25C and its downstream CDC25C/CDK1/cyclinB1 pathway to facilitate MM progression, which might be a potential therapeutic target in MM.


Assuntos
Proteína Quinase CDC2 , Ciclina B1 , Proteínas de Ligação a DNA , Cinesinas , Mieloma Múltiplo , Fosfatases cdc25 , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Fosfatases cdc25/metabolismo , Fosfatases cdc25/genética , Linhagem Celular Tumoral , Proliferação de Células , Ciclina B1/metabolismo , Ciclina B1/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Cinesinas/metabolismo , Cinesinas/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/genética , Prognóstico , Transdução de Sinais
12.
J Phys Chem Lett ; 15(11): 3011-3022, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38465884

RESUMO

The severe performance degradation of low-temperature hydrogen fuel cells upon exposure to trace amounts of carbon monoxide (CO) impurities in reformate hydrogen fuels is one of the challenges that hinders their commercialization. Despite significant efforts that have been made, the CO-tolerance performance of electrocatalysts for the hydrogen oxidation reaction (HOR) is still unsatisfactory. This Perspective discusses the path forward for the rational design of CO-tolerant HOR electrocatalysts. The fundamentals of the CO-tolerant mechanisms on commercialized platinum group metal (PGM) electrocatalysts via either promoting CO electrooxidation or weakening CO adsorption are provided, and comprehensive discussions based on these strategies are presented with typical examples. Given the recent progress, some emerging strategies, including blocking CO diffusion with a barrier layer and developing non-PGM HOR catalysts, are also discussed. We conclude with a discussion of the strengths and limitations of these strategies along with the perspectives of the major challenges and opportunities for future research on CO-tolerant HOR electrocatalysts.

13.
Angew Chem Int Ed Engl ; 63(17): e202317794, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38424035

RESUMO

Tin halide perovskites (THPs) have demonstrated exceptional potential for various applications owing to their low toxicity and excellent optoelectronic properties. However, the crystallization kinetics of THPs are less controllable than its lead counterpart because of the higher Lewis acidity of Sn2+, leading to THP films with poor morphology and rampant defects. Here, a colloidal zeta potential modulation approach is developed to improve the crystallization kinetics of THP films inspired by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. After adding 3-aminopyrrolidine dihydro iodate (APDI2) in the precursor solution to change the zeta potential of the pristine colloids, the total interaction potential energy between colloidal particles with APDI2 could be controllably reduced, resulting in a higher coagulation probability and a lower critical nuclei concentration. In situ laser light scattering measurements confirmed the increased nucleation rate of the THP colloids with APDI2. The resulting film with APDI2 shows a pinhole-free morphology with fewer defects, achieving an impressive efficiency of 15.13 %.

14.
J Am Chem Soc ; 146(9): 6345-6351, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377535

RESUMO

Selenium (Se) discovered in 1817 belongs to the family of chalcogens. Surprisingly, despite the long history of over two centuries and the chemical simplicity of Se, the structure of amorphous Se (a-Se) remains controversial to date regarding the dominance of chains versus rings. Here, we find that vapor-deposited a-Se is composed of disordered rings rather than chains in melt-quenched a-Se. We further reveal that the main origin of this controversy is the facile transition of rings to chains arising from the inherent instability of rings. This transition can be inadvertently triggered by certain characterization techniques themselves containing above-bandgap illumination (above 2.1 eV) or heating (above 50 °C). We finally build a roadmap for obtaining accurate Raman spectra by using above-bandgap excitation lasers with low photon flux (below 1017 phs m-2 s-1) and below-bandgap excitation lasers measured at low temperatures (below -40 °C) to minimize the photoexcitation- and heat-induced ring-to-chain transitions.

15.
Angew Chem Int Ed Engl ; 63(10): e202318591, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38230583

RESUMO

The thermally stable inorganic cesium-based perovskites promise efficient and stable photovoltaics. Unfortunately, the strong ionic bonds lead to uncontrollable rapid crystallization, making it difficult in fabricating large-area black-phase film for photovoltaics. Herein, we developed a facile hydrogen-bonding assisted strategy for modulating the crystallization of CsPbI2 Br to achieve uniform large-area phase-pure films with much-reduced defects. The simple addition of methylamine acetate in precursors not only promotes the formation of intermediate phase via hydrogen bonding to circumvent the direct crystallization of CsPbI2 Br from ionic precursors but also widens the film processing window, thus enabling to fabricate large-area high-quality phase-pure CsPbI2 Br film under benign conditions. Combining with stable dopant-free poly(3-hexylthiophene), the CsPbI2 Br solar cells achieve the record-high efficiencies of 18.14 % and 16.46 % for 0.1 cm2 and 1 cm2 active area, respectively. The obtained high efficiency of 38.24 % under 1000 lux illumination suggests its potential in indoor photovoltaics for powering the Internet of Things, etc.

16.
Small Methods ; 8(1): e2300957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37802971

RESUMO

Electrochemically converting CO2 back into fuels and chemicals is promising in alleviating the greenhouse effect worldwide. Various high-efficiency catalysts have been achieved, yet the unsatisfied structural stability under CO2 electrolysis conditions restricts their practical application. Herein, a sub-5 nm sized CuInS2 quantum dots (CIS-QDs) based electrocatalyst for converting CO2 into CO are developed. Taking advantage of the stable M─Ch (metal-chalcogenide) covalent bonds, and unique p-block metal properties, the as-prepared catalyst exhibits excellent structural stability under large overpotentials and can achieve a high CO Faradaic efficiency (FE) of 86% (total CO2 reduction FE of 89%) at -0.65 V versus reversible hydrogen electrode with long-term durability of 40 h and outstanding current densities of 10.6 mA cm-2 simultaneously. Furthermore, detailed electrochemical analyses revealed that the excellent performance of the as-prepared catalysts shall be attributed to the high-density active sites and fast charge transfer brought by the ultrasmall size of CIS-QDs. This work provides insights into the design of high-density and stable catalytic sites for developing high-performance electrocatalysts.

17.
Chemosphere ; 342: 140190, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716558

RESUMO

Heteroatom doping, involving the introduction of atoms with distinct electronegativity into carbon materials, has emerged as an effective approach to optimize their charge distribution. In this study, we designed a strategy to synthesize in-situ Mn, N co-doped carbon nanospheres (Mn-NC) through the polycondensation of 2,6-diaminopyridine and formaldehyde in synchronization with Mn2+ chelation to form Mn-polytriazine precursor, followed by calcination to form carbonaceous solid. Then Mn-NC was fabricated into a capacitive deionization (CDI) electrode for the selective removal of uranium ions (U (VI)), which is commonly found in radioactive water. Interestingly, Mn-NC exhibited good selectivity for UO22+ capture with a demonstrated adsorption capacity of approximately 194 mg/g @1.8 V. The systematic analysis of the adsorption mechanism of UO22+ revealed that N dopants within Mn-NC can coordinate with the U (VI) ions, thereby facilitating the removal process. Our study presents a straightforward and convenient strategy for removing UO22+ ions by harnessing the coordination effect, eliminating the requirement for pore size control.

18.
Small Methods ; 7(11): e2300574, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572004

RESUMO

Aqueous zinc-ion batteries are promising energy storage devices due to their low cost, good ionic conductivity, and high safety. Conductive polyaniline is a promising cathode because of its redox activity, but because the neutral electrolyte protonates only weakly, it displays limited electrochemical activity. A polyaniline cathode is developed with proton self-doping from manganese metal-organic frameworks (Mn-MOFs) that alleviates the deprotonation and electrochemical activity concerns arising during the charge/discharge process. The MOFs carboxyl group provides protons to prevent deprotonation and allows the polyaniline to reach a high zinc storage redox activity. The proton self-doped polyaniline cathode has a superior specific capacity (273 mAh g-1 at 0.5 A g-1 ), a high rate property (154 mAh g-1 at 20 A g-1 ), and excellent cyclability retention (87% over 4000 cycles at 15 A g-1 ). This research provides fresh insight into the development of innovative polymers as cathode materials for high-performance AZIBs.

19.
Sci Rep ; 13(1): 12422, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528177

RESUMO

In this study, we conducted direct synthesis of a dual metal-organic framework (Ni/Co-Hemin MOF) on phosphorous-doped reduced graphene oxide (PrGO) to serve as an active material in high-performance asymmetrical supercapacitors. The nanocomposite was utilized as an active material in supercapacitors, exhibiting a noteworthy specific capacitance of 963 C g-1 at 1.0 A g-1, along with a high rate capability of 68.3% upon increasing the current density by 20 times, and superior cycling stability. Our comprehensive characterization and control experiments indicated that the improved performance can be attributed to the combined effect of the dual MOF and the presence of phosphorous, influencing the battery-type supercapacitor behavior of GO. Additionally, we fabricated an asymmetric hybrid supercapacitor (AHSC) using Ni/Co-Hemin/PrGO/Nickel foam (NF) and activated carbon (AC)/NF. This AHSC demonstrated a specific capacitance of 281 C g-1 at 1.0 A g-1, an operating voltage of 1.80 V, an impressive energy density of 70.3 Wh kg-1 at a high power density of 0.9 kW kg-1. Notably, three AHSC devices connected in series successfully powered a clock for approximately 42 min. These findings highlight the potential application of Hemin-based MOFs in advanced supercapacitor systems.

20.
J Am Chem Soc ; 145(25): 13805-13815, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317527

RESUMO

The alkaline hydrogen oxidation reaction (HOR) involves the coupling of adsorbed hydrogen (Had) and hydroxyl (OHad) species and is thus orders of magnitude slower than that in acid media. According to the Sabatier principle, developing electrocatalysts with appropriate binding energy for both intermediates is vital to accelerating the HOR though it is still challenging. Herein, we propose an unconventional bilateral compressive strained Ni-Ir interface (Ni-Ir(BCS)) as efficient synergistic HOR sites. Density functional theory (DFT) simulations reveal that the bilateral compressive strain effect leads to the appropriate adsorption for both Had and OHad, enabling their coupling thermodynamically spontaneous and kinetically preferential. Such Ni-Ir(BCS) is experimentally achieved by embedding sub-nanometer Ir clusters in graphene-loaded high-density Ni nanocrystals (Ni-Ir(BCS)/G). As predicted, it exhibits a HOR mass activity of 7.95 and 2.88 times those of commercial Ir/C and Pt/C together with much enhanced CO tolerance, respectively, ranking among the most active state-of-the-art HOR catalysts. These results provide new insights into the rational design of advanced electrocatalysts involving coordinated adsorption and activation of multiple reactants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA