RESUMO
BACKGROUND: Accumulating studies have disclosed that circular RNAs (circRNAs) are closely associated with the malignant progression of colorectal cancer (CRC). The aim of our work was to reveal the function of circ_0038718 in CRC. METHODS: The level of genes and proteins were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. In vitro researches were executed via utilizing cell counting Kit-8 (CCK-8), EdU, flow cytometry analysis and wound-healing assay, individually. The target relationship was validated by Dual-luciferase reporter assay. In vivo assay was employed through establishing xenograft tumor model. RESULTS: Circ_0038718 was identified to be increased in CRC tissues and cells. Circ_0038718 downregulation suppressed cell proliferation, migration and facilitated apoptosis of CRC. Mechanistically, circ_0038718 could sponge miR-761 and miR-214-3p to modulate the expression of ITGA6. The rescue experiments proved that miR-761 or miR-214-3p inhibitor attenuated the repressive impact of circ_0038718 inhibition on CRC cells progression, and overexpressed ITGA6 could weaken the inhibitory effect of miR-761 or miR-214-3p on tumor cells. Furthermore, depletion of circ_0038718 confined the tumor growth in vivo. CONCLUSION: Circ_0038718 aggravated the progression of CRC cells via mediating ITGA6 expression through targeting miR-761 and miR-214-3p, providing a new therapeutic target for CRC patients.
RESUMO
Treatment of Mycobacterium abscessus (Mab) infections is very challenging due to its intrinsic resistance to most available drugs. Therefore, it is crucial to discover novel anti-Mab drugs. In this study, we explored an intrinsic resistance mechanism through which Mab resists echinomycin (ECH). ECH showed activity against Mab at a minimum inhibitory concentration (MIC) of 2 µg/ml. A ΔembC strain in which the embC gene was knocked out showed hypersensitivity to ECH (MIC: 0.0078-0.0156 µg/ml). The MICs of ECH-resistant strains screened with reference to ΔembC ranged from 0.25 to 1 µg/ml. Mutations in EmbB, including D306A, D306N, R350G, V555I, and G581S, increased the Mab's resistance to ECH when overexpressed in ΔembC individually (MIC: 0.25-0.5 µg/ml). These EmbB mutants, edited using the CRISPR/Cpf1 system, showed heightened resistance to ECH (MIC: 0.25-0.5 µg/ml). The permeability of these Mab strains with edited genes and overexpression was reduced, as evidenced by an ethidium bromide accumulation assay, but it remained significantly higher than that of the parent Mab. In summary, our study demonstrates that ECH exerts potent anti-Mab activity and confirms that EmbB and EmbC are implicated in Mab's sensitivity to ECH. Mutation in EmbB may partially compensate for a loss of EmbC function.
RESUMO
The increasing clinical significance of Mycobacterium abscessus is owed to its innate high-level, broad-spectrum resistance to antibiotics and therefore rapidly evolves as an important human pathogen. This warrants the identification of novel targets for aiding the discovery of new drugs or drug combinations to treat M. abscessus infections. This study is inspired by the drug-hypersensitive profile of a mutant M. abscessus (U14) with transposon insertion in MAB_1915. We validated the role of MAB_1915 in intrinsic drug resistance in M. abscessus by constructing a selectable marker-free in-frame deletion in MAB_1915 and complementing the mutant with the same or extended version of the gene and then followed by drug susceptibility testing. Judging by the putative function of MAB_1915, cell envelope permeability was studied by ethidium bromide accumulation assay and susceptibility testing against dyes and detergents. In this study, we established genetic evidence of the role of MAB_1915 in intrinsic resistance to rifampicin, rifabutin, linezolid, clarithromycin, vancomycin, and bedaquiline. Disruption of MAB_1915 has also been observed to cause a significant increase in cell envelope permeability in M. abscessus. Restoration of resistance is observed to depend on at least 27 base pairs upstream of the coding DNA sequence of MAB_1915. MAB_1915 could therefore be associated with cell envelope permeability, and hence its role in intrinsic resistance to multiple drugs in M. abscessus, which presents it as a novel target for future development of effective antimicrobials to overcome intrinsic drug resistance in M. abscessus. IMPORTANCE: This study reports the role of a putative fadD (MAB_1915) in innate resistance to multiple drugs by M. abscessus, hence identifying MAB_1915 as a valuable target and providing a baseline for further mechanistic studies and development of effective antimicrobials to check the high level of intrinsic resistance in this pathogen.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/genética , Antibacterianos/farmacologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Humanos , Farmacorresistência Bacteriana Múltipla/genética , Claritromicina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vancomicina/farmacologia , Linezolida/farmacologia , Diarilquinolinas/farmacologia , Rifampina/farmacologia , Elementos de DNA TransponíveisRESUMO
The emergence of drug-resistant mycobacteria has rendered many clinical drugs and regimens ineffective, imposing significant economic and healthcare burden on individuals and society. Repurposing drugs intended for treating other diseases is a time-saving, cost-effective, and efficient approach for identifying excellent antimycobacterial candidates or lead compounds. This study is the first to demonstrate that rupatadine (RTD), a drug used to treat allergic rhinitis, possesses excellent activity against mycobacteria without detectable resistance, particularly Mycobacterium tuberculosis and Mycobacterium marinum, with a minimal inhibitory concentration as low as 3.13 µg/mL. Furthermore, RTD exhibited moderate activity against nonreplicating M. tuberculosis with minimal inhibitory concentrations lower than drugs targeting the cell wall, suggesting that RTD has great potential to be modified and used for the treatment of nonreplicating M. tuberculosis. Additionally, RTD exhibits partial synergistic effects when combined with clofazimine, pretomanid, and TB47 against M. tuberculosis, providing the theoretical foundation for the development of treatment regimens. Transcriptomic profiling leads us to speculate that eight essential genes may be the targets of RTD or may be closely associated with mycobacterial resistance to RTD. In summary, RTD may be a promising hit for further antimycobacterial drug or regimen optimization, especially in the case of nonreplicating mycobacteria.
RESUMO
Background: Currently, a scarcity of prognostic research exists that concentrates on patients with nephrotic syndrome (NS) who also have tuberculosis. The purpose of this study was to assess the in-hospital mortality status of NS patients with tuberculosis, identify crucial risk factors, and create a sturdy prognostic prediction model that can improve disease evaluation and guide clinical decision-making. Methods: We utilized the Medical Information Mart for Intensive Care IV version 2.2 (MIMIC-IV v2.2) database to include 1,063 patients with NS complicated by TB infection. Confounding factors included demographics, vital signs, laboratory indicators, and comorbidities. The Least Absolute Shrinkage and Selection Operator (LASSO) regression and the diagnostic experiment the receiver operating characteristic (ROC) curve analyses were used to select determinant variables. A nomogram was established by using a logistic regression model. The performance of the nomogram was tested and validated using the concordance index (C-index) of the ROC curve, calibration curves, internal cross-validation, and clinical decision curve analysis. Results: The cumulative in-hospital mortality rate for patients with NS and TB was 18.7%. A nomogram was created to predict in-hospital mortality, utilizing Alb, Bun, INR, HR, Abp, Resp., Glu, CVD, Sepsis-3, and AKI stage 7 days. The area under the curve of the receiver operating characteristic evaluation was 0.847 (0.812-0.881), with a calibration curve slope of 1.00 (0.83-1.17) and a mean absolute error of 0.013. The cross-validated C-index was 0.860. The decision curves indicated that the patients benefited from this model when the risk threshold was 0.1 and 0.81. Conclusion: Our clinical prediction model nomogram demonstrated a good predictive ability for in-hospital mortality among patients with NS combined with TB. Therefore, it can aid clinicians in assessing the condition, judging prognosis, and making clinical decisions for such patients.
RESUMO
Fly ash was used as raw material to prepare zeolites through silicate gels, assisted by the hydrothermal method. The silicate gels could be effectively formed in a few minutes in a molten alkali environment. The zeolites could be prepared by using these silicate gels through the hydrothermal method, which realizes the transformation from useless materials to highly valuable materials. The obtained zeolites were applied to the removal of ammonium in water, achieving the highvalue utilization of fly ash. The synthesized zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), thermogravimetric (TG), and Fourier transform infrared (FTIR) spectroscopy. The study on the adsorption and removal of ammonium in water shows that the adsorption of ammonium is more in line with pseudo first-order kinetics, and the adsorption mainly occurs in the first 20 min. The adsorption can reach equilibrium in 30 min, and the maximum adsorption capacity can reach 49.1 mg/g. The adsorption capacity of ammonium has the best performance at pH = 5. Furthermore, within a certain range, an increase in temperature is beneficial for the removal of ammonium.
RESUMO
BACKGROUND AND AIM: Retinol binding protein 4 (RBP4) is an adipokine that has been explored as a key biomarker of type 2 diabetes mellitus (T2DM) in recent years. Researchers have conducted a series of experiments to understand the interplay between RBP4 and T2DM, including its role in insulin resistance and pancreatic ß-cell function. The results of these studies indicate that RBP4 has a significant influence on T2DM and is considered a potential biomarker of T2DM. However, there have also been some controversies about the relationship between RBP4 levels and T2DM. In this review, we update and summarize recent studies focused on the relationship between RBP4 and T2DM and its role in insulin resistance and pancreatic ß-cell function to clarify the existing controversy and provide evidence for future studies. We also assessed the potential therapeutic applications of RBP4 in treating T2DM. METHODS: A narrative review. RESULTS: Overall, there were significant associations between RBP4 levels, insulin resistance, pancreatic ß-cell function, and T2DM. CONCLUSIONS: More mechanistic studies are needed to determine the role of RBP4 in the onset of T2DM, especially in terms of pancreatic ß-cell function. In addition, further studies are required to evaluate the effects of drug intervention, lifestyle intervention, and bariatric surgery on RBP4 levels to control T2DM and the role of reducing RBP4 levels in improving insulin sensitivity and pancreatic ß-cell function.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Proteínas Plasmáticas de Ligação ao Retinol , Humanos , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Animais , Biomarcadores/sangueRESUMO
Owing to the increasing resistance to most existing antimicrobial drugs, research has shifted towards developing novel antimicrobial agents with mechanisms of action distinct from those of current clinical options. Pleuromutilins are antibiotics known for their distinct mechanism of action, inhibiting bacterial protein synthesis by binding to the peptidyl transferase center of the ribosome. Recent studies have revealed that pleuromutilin derivatives can disrupt bacterial cell membranes, thereby enhancing antibacterial efficacy. Both marketed pleuromutilin derivatives and those in clinical trials have been developed by structurally modifying the pleuromutilin C14 side chain to improve their antimicrobial activity. Therefore, this review aims to review advancement in the chemical structural characteristics, antibacterial activities, and structure-activity relationship studies of pleuromutilins, specifically focusing on modifications made to the C14 side chain in recent years. These findings provide a valuable reference for future research and development of pleuromutilins.
Assuntos
Diterpenos , Compostos Policíclicos , Pleuromutilinas , Antibacterianos/farmacologia , Antibacterianos/química , Diterpenos/farmacologia , Diterpenos/química , Compostos Policíclicos/farmacologia , Relação Estrutura-Atividade , Testes de Sensibilidade MicrobianaRESUMO
With the development of modern industry, the issue of water pollution has garnered increasing attention. Photocatalysis, as a novel green environmental technology that is resource-efficient, environmentally friendly, and highly promising, has found extensive applications in the field of organic pollutant treatment. However, common semiconductor materials exhibit either a relatively low photocatalytic efficiency in the visible light range or an inefficient separation of photogenerated charges, resulting in their limited ability to harness solar energy effectively. Consequently, the development of new photocatalysts has become a pivotal focus in current photocatalysis research to enhance solar energy utilization. This research provides a brief explanation of the photocatalytic mechanism of the AgIO3/CTF heterojunction photocatalyst. Due to the localized surface plasmon resonance (LSPR) effect, the Ag nanoparticles demonstrate significant absorption in the visible light region, playing a crucial role in the highly efficient photocatalytic reduction of organic pollutants.
RESUMO
Background: Pulmonary nodular consolidation (PN) and pulmonary cavity (PC) may represent the two most promising imaging signs in differentiating multidrug-resistant (MDR)-pulmonary tuberculosis (PTB) from drug-sensitive (DS)-PTB. However, there have been concerns that literature described radiological feature differences between DS-PTB and MDR-PTB were confounded by that MDR-PTB cases tend to have a longer history. This study seeks to further clarify this point. Methods: All cases were from the Guangzhou Chest Hospital, Guangzhou, China. We retrieved data of consecutive new MDR cases [n=46, inclusive of rifampicin-resistant (RR) cases] treated during the period of July 2020 and December 2021, and according to the electronic case archiving system records, the main PTB-related symptoms/signs history was ≤3 months till the first computed tomography (CT) scan in Guangzhou Chest Hospital was taken. To pair the MDR-PTB cases with assumed equal disease history length, we additionally retrieved data of 46 cases of DS-PTB patients. Twenty-two of the DS patients and 30 of the MDR patients were from rural communities. The first CT in Guangzhou Chest Hospital was analysed in this study. When the CT was taken, most cases had anti-TB drug treatment for less than 2 weeks, and none had been treated for more than 3 weeks. Results: Apparent CT signs associated with chronicity were noted in 10 cases in the DS group (10/46) and 9 cases in the MDR group (10/46). Thus, the overall disease history would have been longer than the assumed <3 months. Still, the history length difference between DS patients and MDR patients in the current study might not be substantial. The lung volume involvement was 11.3%±8.3% for DS cases and 8.4%±6.6% for MDR cases (P=0.022). There was no statistical difference between DS cases and MDR cases both in PN prevalence and in PC prevalence. For positive cases, MDR cases had more PN number (mean of positive cases: 2.63 vs. 2.28, P=0.38) and PC number (mean of positive cases: 2.14 vs. 1.38, P=0.001) than DS cases. Receiver operating characteristic curve analysis shows, PN ≥4 and PC ≥3 had a specificity of 86% (sensitivity 25%) and 93% (sensitivity 36%), respectively, in suggesting the patient being a MDR cases. Conclusions: A combination of PN and PC features allows statistical separation of DS and MDR cases.
RESUMO
BACKGROUND: It is unclear whether patients with Global Initiative for Chronic Obstructive Lung Disease stage 1 (mild) chronic obstructive pulmonary disease (COPD) have worse respiratory outcomes than individuals with normal spirometry. METHODS: For this systematic review and meta-analysis, we conducted a search of PubMed, Embase, and Web of Science for all literature published up to 1 March 2023. Studies comparing mortality between mild COPD and normal spirometry were included. A random-effects model was used to estimate the combined effect size and its 95% confidence interval (CI). The primary outcome was all-cause mortality. Respiratory disease-related mortality were examined as secondary outcomes. RESULTS: Of 5242 titles identified, 12 publications were included. Patients with mild COPD had a higher risk of all-cause mortality than individuals with normal spirometry (pre-bronchodilator: hazard ratio [HR] = 1.21, 95% CI: 1.11-1.32, I2 = 47.1%; post-bronchodilator: HR = 1.19, 95% CI: 1.02-1.39, I2 = 0.0%). Funnel plots showed a symmetrical distribution of studies and did not suggest publication bias. In jackknife sensitivity analyses, the increased risk of all-cause mortality remained consistent for mild COPD. When the meta-analysis was repeated and one study was omitted each time, the HR and corresponding 95% CI were >1. Patients with mild COPD also had a higher risk of respiratory disease-related mortality (HR = 1.71, 95% CI: 1.03-2.82, I2 = 0.0%). CONCLUSIONS: Our results suggest that mild COPD is associated with increased all-cause mortality and respiratory disease-related mortality compared with normal spirometry. Further research is required to determine whether early intervention and treatment are beneficial in mild COPD.
RESUMO
Pneumonia is a disease caused by inflammation and has high morbidity and mortality rates. Stromal interaction molecule 1 (STIM1) is involved in the regulation of inflammatory processes. However, to the best of the authors' knowledge, the role of STIM1 in pneumonia has not yet been reported. In the present study, lipopolysaccharide (LPS) was administered to A549 cells to construct a cell damage model. The expression of STIM1 in the model cells was detected by western blotting and reverse transcription-quantitative PCR. Then, STIM1 expression was inhibited and cell survival was detected by Cell Counting Kit-8 and flow cytometry. The expression of inflammatory factors was detected by enzyme-linked immunosorbent assay and endoplasmic reticulum stress (ERS)-related proteins were detected by immunofluorescence and western blotting. Subsequently, the relationship between insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) and STIM1 was verified by RNA-binding protein immunoprecipitation assay and actinomycin D treatment. Finally, the regulatory mechanism of IGF2BP2 and STIM1 in LPS-induced A549 cells was further investigated. The results of the present study demonstrated that STIM1 expression was increased in LPS-induced A549 cells and that STIM1 knockdown inhibited LPS-induced A549 cell apoptosis and alleviated LPS-induced A549 cell inflammation and ERS. In addition, IGF2BP2 enhanced the stability of STIM1 mRNA and knockdown of IGF2BP2-regulated STIM1 expression alleviated LPS-induced ERS and inflammatory responses in A549 cells. In conclusion, knockdown of IGF2BP2-regulated STIM1 improved cell damage in the LPS-induced pneumonia cell model by alleviating ERS and the inflammatory response.
RESUMO
Silk fibroin (SF) as a natural biopolymer has become a popular material for biomedical applications due to its minimal immunogenicity, tunable biodegradability, and high biocompatibility. Nowadays, various techniques have been developed for the applications of SF in bioengineering. Most of the literature reviews focus on the SF-based biomaterials and their different forms of applications such as films, hydrogels, and scaffolds. SF is also valuable as a coating on other substrate materials for biomedicine; however, there are few reviews related to SF-coated biomaterials. Thus, in this review, we focused on the surface modification of biomaterials using SF coatings, demonstrated their various preparation methods on substrate materials, and introduced the latest procedures. The diverse applications of SF coatings for biomedicine are discussed, including bone, ligament, skin, mucosa, and nerve regeneration, and dental implant surface modification. SF coating is conducive to inducing cell adhesion and migration, promoting hydroxyapatite (HA) deposition and matrix mineralization, and inhibiting the Notch signaling pathway, making it a promising strategy for bone regeneration. In addition, SF-coated composite scaffolds can be considered prospective candidates for ligament regeneration after injury. SF coating has been proven to enhance the mechanical properties of the substrate material, and render integral stability to the dressing material during the regeneration of skin and mucosa. Moreover, SF coating is a potential strategy to accelerate nerve regeneration due to its dielectric properties, mechanical flexibility, and angiogenesis promotion effect. In addition, SF coating is an effective and popular means for dental implant surface modification to promote osteogenesis around implants made of different materials. Thus, this review can be of great benefit for further improvements in SF-coated biomaterials, and will undoubtedly contribute to clinical transformation in the future.
Assuntos
Implantes Dentários , Fibroínas , Materiais Biocompatíveis/química , Seda/química , Fibroínas/química , Fibroínas/farmacologia , Osteogênese , Alicerces Teciduais/química , Engenharia Tecidual/métodosRESUMO
Background: Tuberculosis (TB) remains a significant global health emergency caused by Mycobacterium tuberculosis (Mtb). The epidemiology, transmission, genotypes, mutational patterns, and clinical consequences of TB have been extensively studied worldwide, however, there is a lack of information regarding the epidemiology and mutational patterns of Mtb in Pakistan, specifically concerning the prevalence of multi-drug resistant TB (MDR-TB). Methods: This study aimed to investigate the incidence of Mtb and associated mutational patterns using the line probe assay (LPA). Previous studies have reported a high frequency of mutations in the rpoB, inhA, and katG genes, which are associated with resistance to rifampicin (RIF) and isoniazid (INH). Therefore, the current study utilized LPA to detect mutations in the rpoB, katG, and inhA genes to identify multi-drug resistant Mtb. Results: LPA analysis of a large pool of Mtb isolates, including samples from 241 sputum-positive patients, revealed that 34.85% of isolates were identified as MDR-TB, consistent with reports from various regions worldwide. The most prevalent mutations observed were rpoB S531L and inhA promoter C15T, which were associated with resistance to RIF and INH, respectively. Conclusions: This study highlights the effectiveness of GenoType MTBDRplus and MTBDRsl assays as valuable tools for TB management. These assays enable rapid detection of resistance to RIF, INH, and fluoroquinolones (FQs) in Mtb clinical isolates, surpassing the limitations of solid and liquid media-based methods. The findings contribute to our understanding of MDR-TB epidemiology and provide insights into the genetic profiles of Mtb in Pakistan, which are essential for effective TB control strategies.
RESUMO
IMPORTANCE: Fluoroquinolones (FQs) play a key role in the treatment regimens against tuberculosis and non-tuberculous mycobacterial infections. However, there are significant differences in the sensitivities of different mycobacteria to FQs. In this study, we proved that this is associated with the polymorphism at amino acid 17 of quinolone resistance-determining region of Gyrase A by gene editing. This is the first study using CRISPR-associated recombination for gene editing in Mycobacterium abscessus to underscore the contribution of the amino acid substitutions in GyrA to FQ susceptibilities in mycobacteria.
Assuntos
Mycobacterium tuberculosis , Mycobacterium , Fluoroquinolonas/farmacologia , Aminoácidos , DNA Girase/genética , Testes de Sensibilidade Microbiana , Mutação , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genéticaRESUMO
Background: Type 2 diabetes mellitus (T2DM)causes a huge public health burden worldwide, especially for those who are overweight or obese, the pain is often greater. And search for effective targets in overweight T2DM could help improve patient quality of life and prognosis. tRNA-derived RNAs (tsRNAs) are multifunctional regulators that are currently receiving much attention, but there is still a lack of knowledge about tsRNAs in overweight T2DM. Methods: T2DM patients with BMI ≥ 25 (Overweight group) and BMI< 25 (Control group) were subjected to tsRNA sequencing; differentially expressed tsRNAs in the two groups were analyzed and their expression was verified using qRT-PCR. The biological function of downstream target genes was also evaluated by enrichment analysis. Results: qRT-PCR evaluation identified a tsRNA with up-regulated expression (tRF-1-28-Glu-TTC-3-M2) and a tsRNA with down-regulated expression (tRF-1-31-His-GTG-1), both of which may be involved in metabolic and energy-related processes. Conclusion: Dysregulation of tsRNA expression in overweight patients with T2DM suggests a potential role for tsRNA in the development of T2DM.
Assuntos
Diabetes Mellitus Tipo 2 , Sobrepeso , Humanos , Sobrepeso/complicações , Sobrepeso/genética , Diabetes Mellitus Tipo 2/genética , Qualidade de Vida , RNA de Transferência/genética , RNA de Transferência/metabolismo , Tecido Adiposo/metabolismoRESUMO
The autoglobulin gene is the main enzyme for circulating LPA production and has lysophosphatidylcholine D activity, which catalyzes the production of lysophosphatidic acid and choline with lysophosphatidylcholine as substrate. A growing body of experimental evidence suggests that autoglobulin is involved in the pathogenesis of a variety of diseases. This review summarizes the different structural ATX inhibitors classified according to their binding mode to the ATX triple orientation site, and summarizes the conformational relationships and molecular docking of each type with ATX structure, hoping to contribute to the development of novel ATX inhibitors.
Assuntos
Lisofosfatidilcolinas , Diester Fosfórico Hidrolases , Diester Fosfórico Hidrolases/metabolismo , Lisofosfatidilcolinas/metabolismo , Simulação de Acoplamento Molecular , Lisofosfolipídeos/metabolismoRESUMO
Pulmonary blastoma (PB) is a rare and invasive malignancy of the lungs with a poor prognosis. Although the mainstay treatment of PB is surgery, and radiotherapy and chemotherapy have been reported, no standard therapy exists for patients inoperable in advanced stages. Moreover, little is known about driver mutation status and immunotherapy efficacy. This paper presents a male patient diagnosed with classic biphasic PB using CT-guided lung biopsy pathology and immunohistochemistry. The patient's symptoms included cough, chest pain, shortness of breath, hemoptysis, and hypodynamia. The primary focus of this paper is to discuss the impact of anti-PD-1 immunotherapy on PB. The patient experienced progression-free survival (PFS) of over 27 months following sintilimab second-line anti-PD-1 therapy. The patient has currently survived for nearly 40 months with a satisfactory quality of life.
RESUMO
As a member of the insulin-receptor superfamily, ALK plays an important role in regulating the growth, proliferation, and survival of cells. ROS1 is highly homologous with ALK, and can also regulate normal physiological activities of cells. The overexpression of both is closely related to the development and metastasis of tumors. Therefore, ALK and ROS1 may serve as important therapeutic targets in non-small cell lung cancer (NSCLC). Clinically, many ALK inhibitors have shown powerful therapeutic efficacy in ALK and ROS1-positive NSCLC patients. However, after some time, patients inevitably develop drug resistance, leading to treatment failure. There are no significant drug breakthroughs in solving the problem of drug-resistant mutations. In this review, we summarize the chemical structural features of several novel dual ALK/ROS1 inhibitors, their inhibitory effect on ALK and ROS1 kinases, and future treatment strategies for patients with ALK and ROS1 inhibitor-resistant mutations.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Tirosina Quinases , Neoplasias Pulmonares/patologia , Quinase do Linfoma Anaplásico/genética , Proteínas Proto-Oncogênicas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/químicaRESUMO
EGFR mutations have been identified in 20,000 reported NSCLC (non-small cell lung cancer) samples, and exon 19 deletions and L858R mutations at position 21, known as "classical" mutations, account for 85-90% of the total EGFR (epidermal growth factor receptor) mutations. In this paper, two series of EGFR kinase inhibitors were designed and synthesised. Among them, compound B1 showed an IC50 value of 13 nM for kinase inhibitory activity against EGFRL858R/T790M and more than 76-fold selectivity for EGFRWT. Furthermore, in an in vitro anti-tumour activity test, compound B1 showed an effective anti-proliferation activity against H1975 cells with an IC50 value of 0.087 µΜ. We also verified the mechanism of action of compound B1 as a selective inhibitor of EGFRL858R/T790M by cell migration assay and apoptosis assay.