Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 171, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368374

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has shown remarkable responses in hematological malignancies with several approved products, but not in solid tumors. Patients suffer from limited response and tumor relapse due to low efficacy of CAR-T cells in the complicated and immunosuppressive tumor microenvironment. This clinical challenge has called for better CAR designs and combined strategies to improve CAR-T cell therapy against tumor changes. METHODS: In this study, IL-15/IL-15Rα was inserted into the extracellular region of CAR targeting mesothelin. In-vitro cytotoxicity and cytokine production were detected by bioluminescence-based killing and ELISA respectively. In-vivo xenograft mice model was used to evaluate the anti-tumor effect of CAR-T cells. RNA-sequencing and online database analysis were used to identify new targets in residual gastric cancer cells after cytotoxicity assay. CAR-T cell functions were detected in vitro and in vivo after GLI Pathogenesis Related 1 (GLIPR1) knockdown in gastric cancer cells. Cell proliferation and migration of gastric cancer cells were detected by CCK-8 and scratch assay respectively after GLIPR1 were overexpressed or down-regulated. RESULTS: CAR-T cells constructed with IL-15/IL-15Rα (CAR-ss-T) showed significantly improved CAR-T cell expansion, cytokine production and cytotoxicity, and resulted in superior tumor control compared to conventional CAR-T cells in gastric cancer. GLIPR1 was up-regulated after CAR-T treatment and survival was decreased in gastric cancer patients with high GLIPR1 expression. Overexpression of GLIPR1 inhibited cytotoxicity of conventional CAR-T but not CAR-ss-T cells. CAR-T treatment combined with GLIPR1 knockdown increased anti-tumor efficacy in vitro and in vivo. CONCLUSIONS: Our data demonstrated for the first time that this CAR structure design combined with GLIPR1 knockdown in gastric cancer improved CAR-T cell-mediated anti-tumor response.


Assuntos
Receptores de Antígenos Quiméricos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto , Microambiente Tumoral , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(6): 1730-1740, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36476896

RESUMO

OBJECTIVE: To explore and design a novel bi-specific chimeric antigen receptor (CAR) structure. To obtain the corresponding CAR-T cells and verify killing effects on tumor cells in vitro and in vivo. METHODS: Five kinds of bi-specific CAR structures including humanized CD19 scFv and CD79b scFv, CD8 hinge & TM-4-1BB-CD3ζ and/or CD3ε chain intracellular regions were constructed and prepared. CAR-19-79b cells were obtained. Five kinds of CAR-T cells were co-incubated with the 3M-CD19-CD79b-Luc target cells. Luciferase assay and ELISA were used to detecte the killing ability of these five groups of CAR-T cells and the secretion of cytokines and compared. The optimal structure of CAR-T cells was used to treat the leukemia mouse model constructed by Daudi-Luc cells. And the treatment efficacy was evaluated. At the same time, other targets were used in this structure. With the same methods, the stability and effectiveness of the structure were verified. RESULTS: CAR-19-79b-T cells were cultured for 7 days, the expression rates of CAR-19 and CAR-79b were 21.6%-36.3% and 21.7%-37.8%, respectively. The killing rates of 5 kinds of CAR-19-79b-T cells prepared by T cells from 3 healthy donors on 3M-CD19-CD79b-Luc cells were significantly higher than those of the T cell control group at the effect-target ratio of 10∶1. Among them, the killing rates of CAR-19-79b-T cells with No. III and No. IV structures were the strongest. After co-incubation with 3M-CD19-CD79b-Luc target cells, the amount of IFN-γ and TNF-α secreted by CAR-T cells with CAR IV and CARV structures was the lowest. And there was no significance between the two groups (P>0.05). CAR IV cells with remarkable killing effect and low secretion factor had obvious therapeutic effect on Daudi-Luc leukemia mice, extending the survival period of mice to 64 days. And all mice in the T cell control group died at 41.0±2.4 days. The CAR-19-BCMA-T and CAR-19-22-T with the same structure showed significant killing ability and low cytokine expression levels. CONCLUSION: A novel bi-specific CAR structures was successfully designed, which could efficiently kill the corresponding tumor cells and secrete less cytokines (such as TNF-α, IFN-γ). Moreover, it shows obvious therapeutic effect on Daudi lymphoma mouse model. The bi-specific CAR structure shows good killing specificity and safety.


Assuntos
Leucemia , Receptores de Antígenos Quiméricos , Animais , Camundongos , Linfócitos T , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA