Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7658, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496445

RESUMO

Sirt6 has been implicated as a key regulator in aging-related diseases, including osteoarthritis. However, its functional role and molecular mechanism in chondrocyte senescence and osteoarthritis pathophysiology remain largely undefined. Here we show that Sirt6 deficiency exaggerates chondrocyte senescence and osteoarthritis progression, whereas intra-articular injection of adenovirus-Sirt6 markedly attenuates surgical destabilization of medial meniscus-induced osteoarthritis. Mechanistically, Sirt6 can directly interact with STAT5 and deacetylate STAT5, thus inhibiting the IL-15/JAK3-induced STAT5 translocation from cytoplasm to nucleus, which inactivates IL-15/JAK3/STAT5 signaling. Mass spectrometry revealed that Sirt6 deacetylated conserved lysine 163 on STAT5. Mutation of lysine 163 to arginine in STAT5 abolished the regulatory effect of Sirt6. In vivo, specific ablation of Sirt6 in chondrocytes exacerbated osteoarthritis. Pharmacological activation of Sirt6 substantially alleviated chondrocyte senescence. Taken together, Sirt6 attenuates chondrocyte senescence by inhibiting IL-15/JAK3/STAT5 signaling. Targeting Sirt6 represents a promising new approach for osteoarthritis.


Assuntos
Cartilagem Articular , Osteoartrite , Sirtuínas , Humanos , Interleucina-15/farmacologia , Lisina/farmacologia , Senescência Celular/genética , Condrócitos , Osteoartrite/genética , Sirtuínas/genética
2.
Scand J Immunol ; 92(2): e12877, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32145090

RESUMO

Osteoclasts are responsible for bone destruction in rheumatoid arthritis (RA), and adipose-derived mesenchymal stromal cells (ADSCs) can inhibit experimental collagen-induced arthritis model. This study aims to determine whether ADSCs also suppresses osteoclastogenesis and bone erosion in collagen-induced arthritis (CIA). Osteoclasts were induced from bone marrow-derived CD11b+ cells with receptor activator of nuclear factor-κ B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) stimulation and assessed with tartrate-resistant acid phosphatase (TRAP) staining. For human cells, osteoclasts were produced from human CD14+ cells. ADSCs were generated and added to cultures with different ratios with CD11b+ cells. Transwell and antibody blockade experiments were performed to define the mechanism of action. NF-κB and RANKL expression were determined by Western blotting and RT-qPCR. About 2 × 106 ADSCs or fibroblast cells were adoptively transferred to DBA1/J mice on day 14 after immunization with type II collagen/complete Freund's adjuvant (CII/CFA) while the onset and severity of the CIA were monitored. Adipose-derived mesenchymal stromal cells but not fibroblast cells completely suppressed osteoclastogenesis in vitro for human and mice. ADSCs injected after immunization and before of onset of CIA significantly suppressed disease development. Treatment with ADSCs dramatically decreased the levels of NF-κB p65/p50 in osteoclasts in vitro and P65/50 and RANKL expression by synovial tissues in vivo. We have demonstrated that ADSCs can inhibit RANKL-induced osteoclasts genesis via CD39 signals. Our findings also suggest that ADSCs can inhibit osteoclasts genesis without the involvement of regulatory T cells. ADSCs might represent a promising strategy for stem cell-based therapies for RA. Thus, manipulation of ADSCs may have therapeutic effects on RA and other bone erosion-related diseases.


Assuntos
Artrite Experimental , Artrite Reumatoide , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteogênese , Transferência Adotiva , Animais , Reabsorção Óssea , Xenoenxertos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA