Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 5(5): 100832, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38321741

RESUMO

Members of the Malvaceae family, including Corchorus spp., Gossypium spp., Bombax spp., and Ceiba spp., are important sources of natural fibers. In the past decade, the genomes of several Malvaceae species have been assembled; however, the evolutionary history of Malvaceae species and the differences in their fiber development remain to be clarified. Here, we report the genome assembly and annotation of two natural fiber plants from the Malvaceae, Bombax ceiba and Ceiba pentandra, whose assembled genome sizes are 783.56 Mb and 1575.47 Mb, respectively. Comparative analysis revealed that whole-genome duplication and Gypsy long terminal repeat retroelements have been the major causes of differences in chromosome number (2n = 14 to 2n = 96) and genome size (234 Mb to 2676 Mb) among Malvaceae species. We also used comparative genomic analyses to reconstruct the ancestral Malvaceae karyotype with 11 proto-chromosomes, providing new insights into the evolutionary trajectories of Malvaceae species. MYB-MIXTA-like 3 is relatively conserved among the Malvaceae and functions in fiber cell-fate determination in the epidermis. It appears to perform this function in any tissue where it is expressed, i.e. in fibers on the endocarp of B. ceiba and in ovule fibers of cotton. We identified a structural variation in a cellulose synthase gene and a higher copy number of cellulose synthase-like genes as possible causes of the finer, less spinnable, weaker fibers of B. ceiba. Our study provides two high-quality genomes of natural fiber plants and offers insights into the evolution of Malvaceae species and differences in their natural fiber formation and development through multi-omics analysis.


Assuntos
Genoma de Planta , Filogenia , Evolução Molecular
2.
Nucleic Acids Res ; 52(D1): D1579-D1587, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37819039

RESUMO

The Plant Metabolome Hub (PMhub), available at https://pmhub.org.cn, is a valuable resource designed to provide scientists with comprehensive information on plant metabolites. It offers extensive details about their reference spectra, genetic foundations, chemical reactions, metabolic pathways and biological functions. The PMhub contains chemical data for 188 837 plant metabolites gathered from various sources, with 1 467 041 standard/in-silico high-resolution tandem mass-spectrometry (HRMS/MS) spectra corresponding to these metabolites. Beyond its extensive literature-derived data, PMhub also boasts a sizable collection of experimental metabolites; it contains 144 366 detected features in 10 typical plant species, with 16 423 successfully annotated by using standard/in-silico HRMS/MS data, this collection is further supplemented with thousands of features gathered from reference metabolites. For each metabolite, the PMhub enables the reconstructed of a simulated network based on structural similarities and existing metabolic pathways. Unlike previous plant-specific metabolome databases, PMhub not only contains a vast amount of metabolic data but also assembles the corresponding genomic and/or transcriptomic information, incorporating multiple methods for the comprehensive genetic analysis of metabolites. To validate the practicality, we verified a synthetic pathway for N-p-coumaroyltyramine by in vitro enzymatic activity experiments. In summary, the robust functionality provided by the PMhub will make it an indispensable tool for studying plant metabolomics.


Assuntos
Bases de Dados Factuais , Metaboloma , Plantas , Redes e Vias Metabólicas , Metaboloma/genética , Metabolômica/métodos , Espectrometria de Massas em Tandem , Plantas/química , Plantas/metabolismo
3.
Gels ; 9(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37754406

RESUMO

Hydrogels containing renewable resources, such as hemicellulose, have received a lot of attention owing to their softness and electrical conductivity which could be applied in soft devices and wearable equipment. However, traditional hemicellulose-based hydrogels generally exhibit poor electrical conductivity and suffer from freezing at lower temperatures owing to the presence of a lot of water. In this study, we dissolved hemicellulose by employing deep eutectic solvents (DESs), which were prepared by mixing choline chloride and imidazole. In addition, hemicellulose-based DES hydrogels were fabricated via photo-initiated reactions of acrylamide and hemicellulose with N, N'-Methylenebisacrylamide as a crosslinking agent. The produced hydrogels demonstrated high electrical conductivity and anti-freezing properties. The conductivity of the hydrogels was 2.13 S/m at room temperature and 1.97 S/m at -29 °C. The hydrogel's freezing point was measured by differential scanning calorimetry (DSC) to be -47.78 °C. Furthermore, the hemicellulose-based DES hydrogels can function as a dependable and sensitive strain sensor for monitoring a variety of human activities.

4.
BMC Biol ; 21(1): 195, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726763

RESUMO

BACKGROUND: Adelphocoris suturalis (Hemiptera: Miridae) is a notorious agricultural pest, which causes serious economic losses to a diverse range of agricultural crops around the world. The poor understanding of its genomic characteristics has seriously hindered the establishment of sustainable and environment-friendly agricultural pest management through biotechnology and biological insecticides. RESULTS: Here, we report a chromosome-level assembled genome of A. suturalis by integrating Illumina short reads, PacBio, 10x Chromium, and Hi-C mapping technologies. The resulting 1.29 Gb assembly contains twelve chromosomal pseudomolecules with an N50 of 1.4 and 120.6 Mb for the contigs and scaffolds, respectively, and carries 20,010 protein-coding genes. The considerable size of the A. suturalis genome is predominantly attributed to a high amount of retrotransposons, especially long interspersed nuclear elements (LINEs). Transcriptomic and phylogenetic analyses suggest that A. suturalis-specific candidate effectors, and expansion and expression of gene families associated with omnivory, insecticide resistance and reproductive characteristics, such as digestion, detoxification, chemosensory receptors and long-distance migration likely contribute to its strong environmental adaptability and ability to damage crops. Additionally, 19 highly credible effector candidates were identified and transiently overexpressed in Nicotiana benthamiana for functional assays and potential targeting for insect resistance genetic engineering. CONCLUSIONS: The high-quality genome of A. suturalis provides an important genomic landscape for further investigations into the mechanisms of omnivory, insecticide resistance and survival adaptation, and for the development of integrated management strategies.


Assuntos
Genômica , Resistência a Inseticidas , Resistência a Inseticidas/genética , Filogenia , Agricultura , Produtos Agrícolas , Cromossomos
5.
Plant Commun ; 4(6): 100661, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37464741

RESUMO

This study reports the assembly of a near-complete genome of Catharanthus roseus, consisting of 561.7 Mb scaffolded into 8 pseudochromosomes with a contig N50 of 24.7 Mb and a scaffold N50 of 71.1 Mb. The assembly enables the construction of a gene regulatory network of the vinblastine biosynthetic pathway and provides insights into the high susceptibility of C. roseus to the Huanglongbing pathogen.


Assuntos
Catharanthus , Vimblastina , Vimblastina/metabolismo , Catharanthus/genética , Catharanthus/metabolismo
6.
Carbohydr Polym ; 312: 120827, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059554

RESUMO

Stretchable and tough polysaccharide-based functional hydrogels have gained popularity for various applications. However, it still remains a great challenge to simultaneously own satisfactory stretchability and toughness, particularly when incorporating renewable xylan to offer sustainability. Herein, we describe a novel stretchable and tough xylan-based conductive hydrogel utilizing the natural feature of rosin derivative. The effect of different compositions on the mechanical properties and the physicochemical properties of corresponding xylan-based hydrogels were systematically investigated. Owing to the multiple non-covalent interactions among different components to dissipate energies and the strain-induced orientation of rosin derivative during the stretching, the highest tensile strength, strain, and toughness of xylan-based hydrogels could reach 0.34 MPa, 2098.4 %, and 3.79 ± 0.95 MJ/m3, respectively. Furthermore, by incorporating MXene as the conductive fillers, the strength and toughness of hydrogels were further enhanced to 0.51 MPa and 5.95 ± 1.19 MJ/m3. Finally, the synthesized xylan-based hydrogels were able to serve as a reliable and sensitive strain sensor to monitor the movements of human beings. This study provides new insights to develop stretchable and tough conductive xylan-based hydrogel, especially utilizing the natural feature of bio-based resources.


Assuntos
Hidrogéis , Xilanos , Humanos , Condutividade Elétrica , Movimento
7.
Plant Biotechnol J ; 21(1): 78-96, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36117410

RESUMO

Zanthoxylum armatum and Zanthoxylum bungeanum, known as 'Chinese pepper', are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.


Assuntos
Zanthoxylum , Genômica , Zanthoxylum/genética , Zanthoxylum/metabolismo , Genoma de Planta , Evolução Molecular
8.
J Vis Exp ; (187)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36190265

RESUMO

Piper nigrum L. (black pepper) is a typical woody vine that is an economically important spice crop across the world. Black pepper production is significantly impacted by root rot disease caused by Phytophthora capsici, which has seriously influenced the industry development as a "choke point" problem. However, the molecular genetic mechanism of resistance in black pepper is unclear, leading to slow progress in the development of new black pepper varieties. An effective inoculation and precise sampling system for Phytophthora capsici on black pepper plants is essential for studying this plant-pathogen interaction. The main aim of this study is to demonstrate a detailed methodology where the basal head of black pepper is inoculated with Phytophthora capsici, while also providing a reference for the inoculation of woody vine plants. The basal head of the black pepper plant was pinpricked to damage it, and mycelial pellets covered the three holes to retain the moisture so the pathogen could infect the plant well. This method provides a better way of solving the instability that is caused by traditional inoculation methods including soil drench or root dipping. It also provides a promising means for studying the mode of action between plants and other soil-borne plant pathogens in agricultural precision breeding.


Assuntos
Phytophthora , Piper nigrum , Phytophthora/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Solo
9.
Front Genet ; 13: 925252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246585

RESUMO

With more than 2000 species, Piper is regarded as having high medicinal, cosmetic, and edible value. There also remain some taxonomic and evolutionary uncertainties about the genus. This study performed chloroplast genome sequencing of eight poorly studied Piper species and a comparative analysis with black pepper (Piper nigrum). All examined species were highly similar in gene content, with 79 protein-coding genes, 24 tRNAs, and four rRNAs. They also harbored significant structural differences: The number of SSRs ranged from 63 to 87, over 10,000 SNPs were detected, and over 1,000 indels were found. The spatial distribution of structural differences was uneven, with the IR and LSC being relatively more conserved and the SSC region highly variable. Such structural variations of the chloroplast genome can help in evaluating the phylogenetic relationships between species, deciding some hard-to-distinguish evolutionary relationships, or eliminating improper markers. The SSC region may be evolving at high speed, and some species showed a high degree of sequence variation in the SSC region, which seriously affected marker sequence detection. Conversely, CDS sequences tended to lack variation, and some CDSs can serve as ideal markers for phylogenetic reconstruction. All told, this study provides an effective strategy for selecting chloroplast markers, analyzing difficult-to-distinguish phylogenetic relationships and avoiding the taxonomic errors caused by high degree of sequence variations.

10.
Front Plant Sci ; 13: 864927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845707

RESUMO

Phytophthora capsici is a destructive oomycete pathogen that causes devastating disease in black pepper, resulting in a significant decline in yield and economic losses. Piper nigrum (black pepper) is documented as susceptible to P. capsici, whereas its close relative Piper flaviflorum is known to be resistant. However, the molecular mechanism underlying the resistance of P. flaviflorum remains obscure. In this study, we conducted a comparative transcriptome and metabolome analysis between P. flaviflorum and P. nigrum upon P. capsici infection and found substantial differences in their gene expression profiles, with altered genes being significantly enriched in terms relating to plant-pathogen interaction, phytohormone signal transduction, and secondary metabolic pathways, including phenylpropanoid biosynthesis. Further metabolome analysis revealed the resistant P. flaviflorum to have a high background endogenous ABA reservoir and time-course-dependent accumulation of ABA and SA upon P. capsici inoculation, while the susceptible P. nigrum had a high background endogenous IAA reservoir and time-course-dependent accumulation of JA-Ile, the active form of JA. Investigation of the phenylpropanoid biosynthesis metabolome further indicated the resistant P. flaviflorum to have more accumulation of lignin precursors than the susceptible P. nigrum, resulting in a higher accumulation after inoculation. This study provides an overall characterization of biologically important pathways underlying the resistance of P. flaviflorum, which theoretically explains the advantage of using this species as rootstock for the management of oomycete pathogen in black pepper production.

11.
Sci Total Environ ; 840: 156702, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35710007

RESUMO

Manganese sulfide (MnS) has unique reactive abilities and can affect the fate and toxicity of contaminants in the natural environment, specifically sulfidic sediments that undergo biogeochemical changes due to natural and artificial processes. However, the effect of oxidization induced by the oxygenation of MnS on organic contaminants remains poorly understood. Herein, we revealed that the hydroxyl radical (HO·) was the dominant reactive oxidant for the rapid degradation of the assessed hydrophobic organic contaminants (including azo dye, nitroaromatic compounds, pesticide, and an endocrine disrupt chemical) during the oxygenation of MnS based on the competitive dynamic experiments, quenching experiments and electron spin resonance (ESR) methods. The removal rates of the assessed organic contaminants were significantly dependent on MnS dosage and co-solutes, including sediment humic acid, metal ions (Mn2+and Fe3+), and inorganic anions (PO43-and Cl-). HO· scavenging by sulfide and its oxidation products (e.g., elemental sulfur), rather than dissolved Mn2+, was responsible for the low utilization efficiency of HO· for the assessed contaminants. The contribution of the manganese oxide (MnO2) generated by the oxygenation of MnS to the examined degradation of contaminants could be neglected. Considered collectively, the reaction between H2O2 and MnO2 generated superoxide radicals (O2-·) which dominated the generation of HO· in an oxic MnS suspension. The results suggest that the impact of oxidization induced by the oxygenation of MnS on environmental contaminants should be of concern in both natural and engineered systems.


Assuntos
Radical Hidroxila , Compostos de Manganês , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Oxirredução , Óxidos , Sulfetos
12.
BMC Genomics ; 22(1): 838, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34794378

RESUMO

BACKGROUND: Black pepper (Piper nigrum L.), an important and long-cultivated spice crop, is native to South India and grown in the tropics. Piperine is the main pungent and bioactive alkaloid in the berries of black pepper, but the molecular mechanism for piperine biosynthesis has not been determined. MicroRNAs (miRNAs), which are classical endogenous noncoding small RNAs, play important roles in regulating secondary metabolism in many species, but less is known regarding black pepper or piperine biosynthesis. RESULTS: To dissect the functions of miRNAs in secondary metabolism especially in piperine biosynthesis, 110 known miRNAs, 18 novel miRNAs and 1007 individual targets were identified from different tissues of black pepper by small RNA sequencing. qRT-PCR and 5'-RLM-RACE experiments were conducted to validate the reliability of the sequencing data and predicted targets. We found 3 miRNAs along with their targets including miR166-4CL, miR396-PER and miR397-CCR modules that are involved in piperine biosynthesis. CONCLUSION: MiRNA regulation of secondary metabolism is a common phenomenon in plants. Our study revealed new miRNAs that regulate piperine biosynthesis, which are special alkaloids in the piper genus, and they might be useful for future piperine genetic improvement of black pepper.


Assuntos
Alcaloides , MicroRNAs , Piper nigrum , Benzodioxóis , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Piperidinas , Plantas Geneticamente Modificadas , Alcamidas Poli-Insaturadas , Reprodutibilidade dos Testes , Análise de Sequência de RNA
13.
Chemosphere ; 284: 131332, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34198067

RESUMO

Although various activated peroxymonosulfate (PMS) processes have been applied widely for the destruction of recalcitrant organics due to its high generation potential of various electrophiles reactive oxygen species (e.g., sulfate and hydroxyl radicals and singlet oxygen), non-radical-based PMS reactions with pollutants are poorly understood. Especially, relatively little information exists on the reactivity of PMS towards organic ester compounds such an organophosphorus pesticides (OPPs). Herein, we systematically studied the unactivated PMS-induced transformation of methyl parathion, a stubborn and toxic OPP. Specifically, direct reaction rather than electrophile radical-based oxidation was responsible for the rapid degradation of methyl parathion. The contribution of the produced singlet oxygen (1O2) from the self-decomposition of PMS to methyl parathion degradation can be neglected. The degradation rate constant (kobs) was strongly dependent on PMS loading and solution pH. The implication of the PMS reaction with methyl parathion for environment treatment was further evaluated by investigating the effects of common water matrices such as sediment humic acids, Cl-, and natural water. The identified metabolic products revealed that exposure to PMS resulted in hydrolysis and oxidation to methyl parathion. Further study demonstrated that PMS was also capable of effectively oxidizing other typical OPPs without explicit activation. This study provides novel insights into the reaction of methyl parathion with PMS, which indicate feasibility for the decontamination of OPP-contaminated environments.


Assuntos
Metil Paration , Praguicidas , Poluentes Químicos da Água , Cinética , Compostos Organofosforados , Oxirredução , Peróxidos , Poluentes Químicos da Água/análise
14.
Chemosphere ; 269: 128695, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33121815

RESUMO

Manganese oxides (MnO2), important environmental oxides, have drawn significant attention in areas such as detoxification of micro-hazardous organic contaminants with electron-donating functional groups such as -OH. However, studies on whether these oxidized processes might further impact the fate of some esters like organophosphorus pesticide (OPPs) remain poorly understood. Herein, we propose a new mechanism involved in the enhanced removal of methyl parathion in mixtures of MnO2 and phenol. Specifically, the removal of methyl parathion (up to 73.7%) was significantly higher for a binary system than for MnO2 alone (approximately 9.3%) and was primarily due to adsorption rather than degradation. The extent of methyl parathion adsorption was dependent significantly on pH, reactant loading and metal ion co-solutes (such as Ca2+, Mg2+, Fe3+ and Mn2+). Both spectroscopic (FT-IR, SEM-EDX and XPS) and chromatographic (LC/HRMS) analyses showed that the remarkable increase in the number of organics (e.g., polymers) onto the MnO2 surface dominated methyl parathion adsorption via hydrogen bonding, n-π and π-π interactions, van der Waals forces and pore-diffusion. The results from this study provided evidence for the role of manganese oxides in adsorption of methyl parathion in soil-aquatic environments involving phenolic compounds.


Assuntos
Compostos de Manganês , Metil Paration , Adsorção , Cinética , Óxidos , Fenol , Fenóis , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Nat Commun ; 10(1): 4702, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619678

RESUMO

Black pepper (Piper nigrum), dubbed the 'King of Spices' and 'Black Gold', is one of the most widely used spices. Here, we present its reference genome assembly by integrating PacBio, 10x Chromium, BioNano DLS optical mapping, and Hi-C mapping technologies. The 761.2 Mb sequences (45 scaffolds with an N50 of 29.8 Mb) are assembled into 26 pseudochromosomes. A phylogenomic analysis of representative plant genomes places magnoliids as sister to the monocots-eudicots clade and indicates that black pepper has diverged from the shared Laurales-Magnoliales lineage approximately 180 million years ago. Comparative genomic analyses reveal specific gene expansions in the glycosyltransferase, cytochrome P450, shikimate hydroxycinnamoyl transferase, lysine decarboxylase, and acyltransferase gene families. Comparative transcriptomic analyses disclose berry-specific upregulated expression in representative genes in each of these gene families. These data provide an evolutionary perspective and shed light on the metabolic processes relevant to the molecular basis of species-specific piperine biosynthesis.


Assuntos
Alcaloides/biossíntese , Genoma de Planta , Piper nigrum/genética , Aciltransferases/genética , Benzodioxóis , Carboxiliases/genética , Mapeamento Cromossômico , Cromossomos , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Genômica , Glicosiltransferases/genética , Filogenia , Piperidinas , Alcamidas Poli-Insaturadas
16.
BMC Genomics ; 17(1): 822, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769171

RESUMO

BACKGROUND: Piper nigrum L., or "black pepper", is an economically important spice crop in tropical regions. Black pepper production is markedly affected by foot rot disease caused by Phytophthora capsici, and genetic improvement of black pepper is essential for combating foot rot diseases. However, little is known about the mechanism of anti- P. capsici in black pepper. The molecular mechanisms underlying foot rot susceptibility were studied by comparing transcriptome analysis between resistant (Piper flaviflorum) and susceptible (Piper nigrum cv. Reyin-1) black pepper species. RESULTS: 116,432 unigenes were acquired from six libraries (three replicates of resistant and susceptible black pepper samples), which were integrated by applying BLAST similarity searches and noted by adopting Kyoto Encyclopaedia of Genes and Gene Ontology (GO) genome orthology identifiers. The reference transcriptome was mapped using two sets of digital gene expression data. Using GO enrichment analysis for the differentially expressed genes, the majority of the genes associated with the phenylpropanoid biosynthesis pathway were identified in P. flaviflorum. In addition, the expression of genes revealed that after susceptible and resistant species were inoculated with P. capsici, the majority of genes incorporated in the phenylpropanoid metabolism pathway were up-regulated in both species. Among various treatments and organs, all the genes were up-regulated to a relatively high degree in resistant species. Phenylalanine ammonia lyase and peroxidase enzyme activity increased in susceptible and resistant species after inoculation with P. capsici, and the resistant species increased faster. The resistant plants retain their vascular structure in lignin revealed by histochemical analysis. CONCLUSIONS: Our data provide critical information regarding target genes and a technological basis for future studies of black pepper genetic improvements, including transgenic breeding.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Phytophthora , Piper nigrum/fisiologia , Piper nigrum/parasitologia , Propanóis/metabolismo , Transcriptoma , Vias Biossintéticas , Biologia Computacional/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
17.
Plant Sci ; 248: 45-56, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27181946

RESUMO

Artocarpus heterophyllus Lam., commonly known as jackfruit, produces the largest tree-borne fruit known thus far. The edible part of the fruit develops from the perianths, and contains many sugar-derived compounds. However, its sugar metabolism is poorly understood. A fruit perianth transcriptome was sequenced on an Illumina HiSeq 2500 platform, producing 32,459 unigenes with an average length of 1345nt. Sugar metabolism was characterized by comparing expression patterns of genes related to sugar metabolism and evaluating correlations with enzyme activity and sugar accumulation during fruit perianth development. During early development, high expression levels of acid invertases and corresponding enzyme activities were responsible for the rapid utilization of imported sucrose for fruit growth. The differential expression of starch metabolism-related genes and corresponding enzyme activities were responsible for starch accumulated before fruit ripening but decreased during ripening. Sucrose accumulated during ripening, when the expression levels of genes for sucrose synthesis were elevated and high enzyme activity was observed. The comprehensive transcriptome analysis presents fundamental information on sugar metabolism and will be a useful reference for further research on fruit perianth development in jackfruit.


Assuntos
Artocarpus/metabolismo , Metabolismo dos Carboidratos/fisiologia , Transcriptoma , Artocarpus/genética , Artocarpus/crescimento & desenvolvimento , Metabolismo dos Carboidratos/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , RNA de Plantas/isolamento & purificação , RNA de Plantas/fisiologia
19.
PLoS One ; 10(6): e0129822, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121657

RESUMO

Black pepper is one of the most popular and oldest spices in the world and valued for its pungent constituent alkaloids. Pinerine is the main bioactive compound in pepper alkaloids, which perform unique physiological functions. However, the mechanisms of piperine synthesis are poorly understood. This study is the first to describe the fruit transcriptome of black pepper by sequencing on Illumina HiSeq 2000 platform. A total of 56,281,710 raw reads were obtained and assembled. From these raw reads, 44,061 unigenes with an average length of 1,345 nt were generated. During functional annotation, 40,537 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 8,196 simple sequence repeats (SSRs) were detected. In a detailed analysis of the transcriptome, housekeeping genes for quantitative polymerase chain reaction internal control, polymorphic SSRs, and lysine/ornithine metabolism-related genes were identified. These results validated the availability of our database. Our study could provide useful data for further research on piperine synthesis in black pepper.


Assuntos
Frutas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Piper nigrum/genética , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Marcadores Genéticos , Lisina/metabolismo , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real
20.
Plant Biotechnol J ; 12(2): 161-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24112122

RESUMO

As a product of asexual reproduction in plants, the somatic embryo (SE) differentiates into a new plantlet via a zygotic embryogenesis-like process. Here, we present the phenotypic and cellular differences between SEs and zygotic embryos (ZEs) revealed by histological section scanning using three parallel development stages of the two types of embryos of cotton (Gossypium hirsutum cv. YZ1), including globular, torpedo and cotyledonary-stages. To identify the molecular characteristics of SE development in cotton, the digital gene expression system was used to profile the genes active during SE and ZE development. A total of 4242 differentially expressed genes (DEGs) were identified in at least one developmental stage. Expression pattern and functional classification analysis based on these DEGs reveals that SE development exhibits a transcriptional activation of stress responses. RT-PCR analysis further confirmed enhanced expression levels of stress-related genes in SEs than in ZEs. Experimental stress treatment, induced by NaCl and ABA, accelerated SE development and increased the transcription of genes related to stress response, in parallel with decelerated proliferation of embryogenic calluses under stress treatment. Our data reveal that SE development involves the activation of stress responses, which we suggest may regulate the balance between cell proliferation and differentiation. These results provide new insight into the molecular mechanisms of SE development and suggest strategies that can be used for regulating the developmental processes of somatic embryogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Estresse Fisiológico , Transcriptoma , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Análise por Conglomerados , Perfilação da Expressão Gênica , Ontologia Genética , Gossypium/citologia , Gossypium/embriologia , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Sementes/citologia , Sementes/embriologia , Sementes/genética , Análise de Sequência de DNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA