Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 270(1): 229-41, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14693155

RESUMO

A model applying surfactant self-assembly theory and classical thermodynamics has been developed to aid in the prediction of solid surface cleaning by aqueous surfactant solutions. Information gained from a combination of surfactant self-assembly behavior and cleaning system parameters, such as oil species, surfactant type, temperature, alkalinity, and solid surface type has been shown to provide insight into surface cleaning. The model combines minimization of free energy, pertinent component distribution mechanisms, and surfactant self-assembly processes to provide a methodology for the predicting of oil droplet contact angles. Such predictive capabilities will allow for the development of beneficial environmental and economic changes to industrial and commercial surface cleaning and degreasing processes. Results from the model will be compared to experimental data to verify the capability of the theory to account for the effect of solutions parameters on oil droplet behavior. The model, while approximate in nature, has shown a remarkable quantitative predictive ability.

2.
J Colloid Interface Sci ; 266(2): 346-58, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-14527458

RESUMO

29Si NMR, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) are used to monitor the synthesis of silica nanoparticles from the base-catalyzed hydrolysis of TEOS in methanol and ethanol. The reactions are conducted at a [TEOS] =0.5 M, low concentrations of ammonia ([NH(3)] =0.01-0.1 M), and [H(2)O] =1.1-4.4 M to resolve the initial size of the first nuclei and to follow their structural evolution. It is found that after an induction period where there is a buildup of singly hydrolyzed monomer, the first nuclei are fractal and open in structure. Interestingly, the nuclei are twice as large in ethanol (R(g) approximately 8 nm) as those in methanol (R(g) approximately 4 nm). The data suggest that the difference in primary particle size is possibly caused by a higher supersaturation ratio of the singly hydrolyzed monomer in methanol than in ethanol if it is assumed that the surface energy of the first nuclei is the same in methanol and ethanol. The particle number concentration and the volume fraction of the silica particles are calculated independently from the SAXS, DLS, and 29Si NMR results. Finally, the rate of nucleation is obtained from the particle number concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA