Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 23: 101729, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253009

RESUMO

Tieguanyin (TGY) is renowned for its distinctive "Yin Rhyme" flavor. To elucidate the underlying formation mechanism, we conducted sensory evaluations, electronic tongue analysis, and widely-targeted metabolomics. Our sensory evaluations and electronic tongue results indicated that TGY exhibits a thick and mellow taste profile, contributing to the "Yin Rhyme" flavor. Metabolomics analysis of tea products revealed that TGY shows significantly higher concentrations of umami substances (L-glutamate, L-theanine) and bitter substances (valine, catechins) compared to Jinguanyin (JGY). Additionally, metabolomic analysis during different oolong tea processing stages revealed significant differences in 21 substances, including L-glutamate, L-theanine, valine, and catechins, between fresh leaves of both varieties. These substances exhibited distinct fluctuation patterns during processing, indicating that the cultivar plays a crucial role in developing the "Yin Rhyme" flavor, which was enhanced throughout processing. This study provides a theoretical foundation for understanding the formation of the unique "Yin Rhyme" flavor of TGY.

2.
Front Nutr ; 10: 1283960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152463

RESUMO

Background: The manufacturing processes of oolong tea significantly impact its nonvolatile components, leading to the emergence of distinct flavor attributes. Understanding the dynamic changes in nonvolatile components during the manufacturing stages of the Jinguanyin (JGY) cultivar is crucial for unraveling the potential mechanism behind flavor formation. Methods: Comprehensive metabolomics and sensomics analyses were conducted to investigate the dynamic changes in nonvolatile components throughout various phases of oolong tea processing, focusing on the JGY cultivar. Results: A total of 1,005 nonvolatile metabolites were detected, with 562 recognized as significant differential metabolites during various phases of oolong tea processing. Notably, the third turning-over, third setting, and high-temperature treatments exhibited the most significant effects on the nonvolatile metabolites of oolong tea. JGY finished tea demonstrated a characteristic flavor profile, marked by mellowness, sweetness in aftertaste, and a significant Yin rhyme. This flavor profile was collectively promoted by the accumulation of amino acids and organic acids, the decrease in flavonols (3-O-glycosides) and sugar substances, the alteration of phenolic acids, and the stabilization of caffeine. Conclusion: This study contribute to the understanding of the formation of oolong tea flavor qualities. The dynamic changes observed in various types of nonvolatile compounds during oolong tea processing shed light on the intricate interplay of metabolites and their influence on the final flavor characteristics.

3.
Food Chem X ; 20: 100952, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37920364

RESUMO

To interpret the formation characteristic flavor during oolong tea manufacturing process, the dynamic changes of key flavor components in samples from various processing steps of Tieguanyin oolong tea production were investigated using widely-targeted metabolomic and the transcriptomic approaches. As a result, a total of 1078 metabolites were determined, of which 62 compounds were identified as biomarkers significantly changed over the manufacturing process. Quantitative determination of the total 50,343 transcripts showed 7480 of them were co-expressed different genes. Glutamic acid served as a critical metabolism hub and a signaling molecule for diverse stress responses. Additionally, the targeted quantification results showed that the contents of catechins and xanthine alkaloids in dried tea were dramatically decreased by 20.19% and 7.15% respectively than those in fresh leaves, which potentially contributed to the alleviation of astringent or bitter palates, promoting the characteristic mellow and rich flavor of Tieguanyin oolong tea.

4.
Food Res Int ; 169: 112839, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254414

RESUMO

Carotenoid-derived volatiles are important contributors to tea aroma quality. However, the profile of the carotenoid pathway and carotenoid-derived volatiles (CDVs) artificial regulation in oolong tea processing has yet to be investigated. In the present work, the content and varieties of carotenoid-derived volatiles, the genome-wide identification of carotenoid cleavage dioxygenase (CsCCD) gene family, the expression level of CsCCD and other key genes in the carotenoid pathway, and the profile of carotenoid substances were analyzed by multi-omics and bioinformatics methods with innovative postharvest supplementary LED light during oolong tea processing. The results showed that during oolong tea processing, a total of 17 CDVs were identified. The content of ß-ionone increased up to 26.07 times that of fresh leaves and its formation was significantly promoted with supplementary LED light from 0.54 µg/g to 0.83 µg/g in the third turning over treatment. A total of 11 CsCCD gene family members were identified and 119 light response cis-acting regulatory elements of CsCCD were found. However, the expression level of most genes in the carotenoid pathway including CsCCD were reduced due to mechanical stress. 'Huangdan' fresh tea leaves had a total of 1 430.46 µg/g 22 varieties of carotenoids, which mainly composed of lutein(78.10%), ß-carotene(8.24%) and zeaxanthin(8.18%). With supplementary LED light, the content of antherxanthin and zeaxanthin in xanthophyll cycle was regulated and CDVs such as α-ionone, ß-ionone, pseudoionone, damascenone, 6,10-dimethyl-5,9-undecadien-2-one, citral, geranyl acetate and α-farnesene were promoted significantly in different phases during oolong tea processing. Our results revealed the profile of the carotenoid metabolism pathway in oolong tea processing from the perspective of precursors, gene expression and products, and put forward an innovative way to improve CDVs by postharvest supplementary LED light.


Assuntos
Carotenoides , Redes e Vias Metabólicas , Zeaxantinas/metabolismo , Carotenoides/metabolismo , Chá
5.
Molecules ; 27(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35807544

RESUMO

As important factors to oolong tea quality, the accumulation and dynamic change in aroma substances attracts great attention. The volatile composition of oolong tea is closely related to the precursor contents. Fatty acids (FAs) and their derivatives are basic components of oolong tea fragrance during the postharvest process. However, information about the precursors of FAs during the postharvest process of oolong tea production is rare. To investigate the transformation of fatty acids during the process of oolong tea production, gas chromatograph−flame ionization detection (GC-FID) was conducted to analyze the composition of FAs. The results show that the content of total polyunsaturated FAs initially increased and then decreased. Specifically, the contents of α-linolenic acid, linoleic acid and other representative substances decreased after the turn-over process of oolong tea production. The results of partial least squares discrimination analysis (PLS-DA) showed that five types of FAs were obviously impacted by the processing methods of oolong tea (VIP > 1.0). LOX (Lipoxygenase, EC 1.13.11.12) is considered one of the key rate-limiting enzymes of long-chain unsaturated FAs in the LOX-HPL (hydroperoxide lyase) pathway, and the mechanical wounding occurring during the postharvest process of oolong tea production greatly elevated the activity of LOX.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/metabolismo , Ácidos Graxos/análise , Folhas de Planta/química , Chá , Compostos Orgânicos Voláteis/análise
6.
PeerJ ; 10: e13453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722255

RESUMO

Fatty acid derived volatiles (FADVs) are major contributors to the aroma quality of oolong tea (Camellia sinensis). Most of the processing time for oolong tea is taken up by turning over treatments, but the full profile of fatty acid metabolic changes during this process remains unclear. In this study, we detected fatty acids, their derived volatiles, and related genes of Tieguanyin oolong tea using biochemical and molecular biology methods. The results showed that with an increase in turning over intensities, the content of total unsaturated fatty acids continuously dropped and the content of characteristic FADVs, such as hexanoic acid (Z)-3-Hexenly ester and 2-exenal, continued to increase. Lipoxygenase (LOX), a key gene family in the fatty acid metabolic pathway, showed different patterns, and CsLOX1 (TEA025499.1) was considered to be a key gene during the turning over processes. We found that fruit-like aroma (Z)-3-Hexen-1-ol acetate had a strong correlation with the expression levels of eight Camelia sinensis LOX family genes. Tieguanyin had relatively rich pleasant volatile compounds with moderate turning over intensity (five times turning over treatments). This study provides an overall view of how fatty acid metabolites change and affect the quality of oolong tea with different turning over intensities during processing.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/química , Ácidos Graxos/análise , Compostos Orgânicos Voláteis/análise , Folhas de Planta/química , Chá/química
7.
Front Plant Sci ; 12: 738445, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745173

RESUMO

Aroma is an essential quality indicator of oolong tea, a tea derived from the Camellia sinensis L. plant. Carboxylic 6 (C6) acids and their derivative esters are important components of fatty acid (FA)-derived volatiles in oolong tea. However, the formation and regulation mechanism of C6 acid during postharvest processing of oolong tea remains unclear. To gain better insight into the molecular and biochemical mechanisms of C6 compounds in oolong tea, a combined analysis of alcohol dehydrogenase (ADH) activity, CsADH2 key gene expression, and the FA-derived metabolome during postharvest processing of oolong tea was performed for the first time, complemented by CsHIP (hypoxia-induced protein conserved region) gene expression analysis. Volatile fatty acid derivative (VFAD)-targeted metabolomics analysis using headspace solid-phase microextraction-gas chromatography time-of-flight mass spectrometry (HS-SPEM-GC-TOF-MS) showed that the (Z)-3-hexen-1-ol content increased after each turnover, while the hexanoic acid content showed the opposite trend. The results further showed that both the ADH activity and CsADH gene expression level in oxygen-deficit-turnover tea leaves (ODT) were higher than those of oxygen-turnover tea leaves (OT). The C6-alcohol-derived ester content of OT was significantly higher than that of ODT, while C6-acid-derived ester content showed the opposite trend. Furthermore, the HIP gene family was screened and analyzed, showing that ODT treatment significantly promoted the upregulation of CsHIG4 and CsHIG6 gene expression. These results showed that the formation mechanism of oolong tea aroma quality is mediated by airflow in the lipoxygenase-hydroperoxide lyase (LOX-HPL) pathway, which provided a theoretical reference for future quality control in the postharvest processing of oolong tea.

8.
Front Plant Sci ; 12: 788469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154182

RESUMO

Understanding extensive transcriptional reprogramming events mediated by wounding during the oolong tea manufacturing process is essential for improving oolong tea quality. To improve our comprehension of the architecture of the wounding-induced gene regulatory network, we systematically analyzed the high-resolution transcriptomic and metabolomic data from wounding-treated (after turnover stage) tea leaves at 11 time points over a 220-min period. The results indicated that wounding activates a burst of transcriptional activity within 10 min and that the temporal expression patterns over time could be partitioned into 18 specific clusters with distinct biological processes. The transcription factor (TF) activity linked to the TF binding motif participated in specific biological processes within different clusters. A chronological model of the wounding-induced gene regulatory network provides insight into the dynamic transcriptional regulation event after wounding treatment (the turnover stage). Time series data of wounding-induced volatiles reveal the scientific significance of resting for a while after wounding treatment during the actual manufacturing process of oolong tea. Integrating information-rich expression data with information on volatiles allowed us to identify many high-confidence TFs participating in aroma formation regulation after wounding treatment by using weighted gene co-expression network analysis (WGCNA). Collectively, our research revealed the complexity of the wounding-induced gene regulatory network and described wounding-mediated dynamic transcriptional reprogramming events, serving as a valuable theoretical basis for the quality formation of oolong tea during the post-harvest manufacturing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA