Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
BMC Neurol ; 24(1): 174, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789945

RESUMO

BACKGROUND: The thalamus has a central role in the pathophysiology of idiopathic cervical dystonia (iCD); however, the nature of alterations occurring within this structure remain largely elusive. Using a structural magnetic resonance imaging (MRI) approach, we examined whether abnormalities differ across thalamic subregions/nuclei in patients with iCD. METHODS: Structural MRI data were collected from 37 patients with iCD and 37 healthy controls (HCs). Automatic parcellation of 25 thalamic nuclei in each hemisphere was performed based on the FreeSurfer program. Differences in thalamic nuclei volumes between groups and their relationships with clinical information were analysed in patients with iCD. RESULTS: Compared to HCs, a significant reduction in thalamic nuclei volume primarily in central medial, centromedian, lateral geniculate, medial geniculate, medial ventral, paracentral, parafascicular, paratenial, and ventromedial nuclei was found in patients with iCD (P < 0.05, false discovery rate corrected). However, no statistically significant correlations were observed between altered thalamic nuclei volumes and clinical characteristics in iCD group. CONCLUSION: This study highlights the neurobiological mechanisms of iCD related to thalamic volume changes.


Assuntos
Imageamento por Ressonância Magnética , Tálamo , Torcicolo , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Torcicolo/diagnóstico por imagem , Torcicolo/patologia , Imageamento por Ressonância Magnética/métodos , Tálamo/diagnóstico por imagem , Tálamo/patologia , Adulto , Idoso , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/patologia
2.
Brain Circ ; 10(1): 35-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655435

RESUMO

Acute ischemic stroke (AIS) condition assessment and clinical prognosis are significantly influenced by the compensatory state of cerebral collateral circulation. A standard clinical test known as single-phase computed tomography angiography (sCTA) is useful for quickly and accurately assessing the creation or opening of cerebral collateral circulation, which is crucial for the diagnosis and treatment of AIS. To improve the clinical application of sCTA in the clinical assessment of collateral circulation, we examine the present use of sCTA in AIS in this work.

3.
Brain Commun ; 6(2): fcae117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638150

RESUMO

The thalamus is considered a key region in the neuromechanisms of blepharospasm. However, previous studies considered it as a single, homogeneous structure, disregarding potentially useful information about distinct thalamic nuclei. Herein, we aimed to examine (i) whether grey matter volume differs across thalamic subregions/nuclei in patients with blepharospasm and blepharospasm-oromandibular dystonia; (ii) causal relationships among abnormal thalamic nuclei; and (iii) whether these abnormal features can be used as neuroimaging biomarkers to distinguish patients with blepharospasm from blepharospasm-oromandibular dystonia and those with dystonia from healthy controls. Structural MRI data were collected from 56 patients with blepharospasm, 20 with blepharospasm-oromandibular dystonia and 58 healthy controls. Differences in thalamic nuclei volumes between groups and their relationships to clinical information were analysed in patients with dystonia. Granger causality analysis was employed to explore the causal effects among abnormal thalamic nuclei. Support vector machines were used to test whether these abnormal features could distinguish patients with different forms of dystonia and those with dystonia from healthy controls. Compared with healthy controls, patients with blepharospasm exhibited reduced grey matter volume in the lateral geniculate and pulvinar inferior nuclei, whereas those with blepharospasm-oromandibular dystonia showed decreased grey matter volume in the ventral anterior and ventral lateral anterior nuclei. Atrophy in the pulvinar inferior nucleus in blepharospasm patients and in the ventral lateral anterior nucleus in blepharospasm-oromandibular dystonia patients was negatively correlated with clinical severity and disease duration, respectively. The proposed machine learning scheme yielded a high accuracy in distinguishing blepharospasm patients from healthy controls (accuracy: 0.89), blepharospasm-oromandibular dystonia patients from healthy controls (accuracy: 0.82) and blepharospasm from blepharospasm-oromandibular dystonia patients (accuracy: 0.94). Most importantly, Granger causality analysis revealed that a progressive driving pathway from pulvinar inferior nuclear atrophy extends to lateral geniculate nuclear atrophy and then to ventral lateral anterior nuclear atrophy with increasing clinical severity in patients with blepharospasm. These findings suggest that the pulvinar inferior nucleus in the thalamus is the focal origin of blepharospasm, extending to pulvinar inferior nuclear atrophy and subsequently extending to the ventral lateral anterior nucleus causing involuntary lower facial and masticatory movements known as blepharospasm-oromandibular dystonia. Moreover, our results also provide potential targets for neuromodulation especially deep brain stimulation in patients with blepharospasm and blepharospasm-oromandibular dystonia.

4.
Brain Imaging Behav ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664360

RESUMO

Although previous studies reported structural changes associated with electroconvulsive therapy (ECT) in major depressive disorder (MDD), the underlying molecular basis of ECT remains largely unknown. Here, we combined two independent structural MRI datasets of MDD patients receiving ECT and transcriptomic gene expression data from Allen Human Brain Atlas to reveal the molecular basis of ECT for MDD. We performed partial least square regression to explore whether/how gray matter volume (GMV) alterations were associated with gene expression level. Functional enrichment analysis was conducted using Metascape to explore ontological pathways of the associated genes. Finally, these genes were further assigned to seven cell types to determine which cell types contribute most to the structural changes in MDD patients after ECT. We found significantly increased GMV in bilateral hippocampus in MDD patients after ECT. Transcriptome-neuroimaging association analyses showed that expression levels of 726 genes were positively correlated with the increased GMV in MDD after ECT. These genes were mainly involved in synaptic signaling, calcium ion binding and cell-cell signaling, and mostly belonged to excitatory and inhibitory neurons. Moreover, we found that the MDD risk genes of CNR1, HTR1A, MAOA, PDE1A, and SST as well as ECT related genes of BDNF, DRD2, APOE, P2RX7, and TBC1D14 showed significantly positive associations with increased GMV. Overall, our findings provide biological and molecular mechanisms underlying structural plasticity induced by ECT in MDD and the identified genes may facilitate future therapy for MDD.

5.
J Alzheimers Dis ; 97(2): 909-926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160355

RESUMO

BACKGROUND: Structural magnetic resonance imaging (sMRI) is vital for early Alzheimer's disease (AD) diagnosis, though confirming specific biomarkers remains challenging. Our proposed Multi-Scale Self-Attention Network (MUSAN) enhances classification of cognitively normal (CN) and AD individuals, distinguishing stable (sMCI) from progressive mild cognitive impairment (pMCI). OBJECTIVE: This study leverages AD structural atrophy properties to achieve precise AD classification, combining different scales of brain region features. The ultimate goal is an interpretable algorithm for this method. METHODS: The MUSAN takes whole-brain sMRI as input, enabling automatic extraction of brain region features and modeling of correlations between different scales of brain regions, and achieves personalized disease interpretation of brain regions. Furthermore, we also employed an occlusion sensitivity algorithm to localize and visualize brain regions sensitive to disease. RESULTS: Our method is applied to ADNI-1, ADNI-2, and ADNI-3, and achieves high performance on the classification of CN from AD with accuracy (0.93), specificity (0.82), sensitivity (0.96), and area under curve (AUC) (0.95), as well as notable performance on the distinguish of sMCI from pMCI with accuracy (0.85), specificity (0.84), sensitivity (0.74), and AUC (0.86). Our sensitivity masking algorithm identified key regions in distinguishing CN from AD: hippocampus, amygdala, and vermis. Moreover, cingulum, pallidum, and inferior frontal gyrus are crucial for sMCI and pMCI discrimination. These discoveries align with existing literature, confirming the dependability of our model in AD research. CONCLUSION: Our method provides an effective AD diagnostic and conversion prediction method. The occlusion sensitivity algorithm enhances deep learning interpretability, bolstering AD research reliability.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Algoritmos , Disfunção Cognitiva/diagnóstico
6.
Neuroscience ; 531: 50-59, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709002

RESUMO

Selective impairment in recognizing facial expressions of disgust was reported in patients with focal dystonia several years ago, but the basic neural mechanisms remain largely unexplored. Therefore, we investigated whether dysfunction of the brain network involved in disgust recognition processing was related to this selective impairment in blepharospasm. Facial emotion recognition evaluations and resting-state functional magnetic resonance imaging were performed in 33 blepharospasm patients and 33 healthy controls (HCs). The disgust processing network was constructed, and modularity analyses were performed to identify sub-networks. Regional functional indexes and intra- and inter-functional connections were calculated and compared between the groups. Compared to HCs, blepharospasm patients demonstrated a worse performance in disgust recognition. In addition, functional connections within the sub-network involved in perception processing rather than recognition processing of disgust were significantly decreased in blepharospasm patients compared to HCs. Specifically, decreased functional connections were noted between the left fusiform gyrus (FG) and right middle occipital gyrus (MOG), the left FG and right FG, and the right FG and left MOG. We identified decreased functional activity in these regions, as indicated by a lower amplitude of low-frequency fluctuation in the left MOG, fractional amplitude of low-frequency fluctuation in the right FG, and regional homogeneity in the right FG and left MOG in blepharospasm patients versus HCs. Our results suggest that dysfunctions of the disgust processing network exist in blepharospasm. A deficit in disgust emotion recognition may be attributed to disturbances in the early perception of visual disgust stimuli in blepharospasm patients.


Assuntos
Blefarospasmo , Reconhecimento Facial , Humanos , Blefarospasmo/diagnóstico por imagem , Emoções , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Expressão Facial
7.
Front Neurosci ; 17: 1180434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360179

RESUMO

Background: Functional magnetic resonance imaging (fMRI) has been widely used to investigate the brain effect of acupuncture point Stomach 36 (ST36, Zusanli). However, inconsistent results have hindered our understanding of the neural mechanisms of acupuncture at ST36. Objective: To perform a meta-analysis of fMRI studies on acupuncture at ST36 to assess the brain atlas of acupuncture at ST36 from available studies. Method: Based on a preregistered protocol in PROSPERO (CRD42019119553), a large set of databases was searched up to August 9, 2021, without language restrictions. Peak coordinates were extracted from clusters that showed significant signal differences before and after acupuncture treatment. A meta-analysis was performed using seed-based d mapping with permutation of subject images (SDM-PSI), a newly improved meta-analytic method. Results: A total of 27 studies (27 ST36) were included. This meta-analysis found that ST36 could activate the left cerebellum, the bilateral Rolandic operculum, the right supramarginal gyrus, and the right cerebellum. Functional characterizations showed that acupuncture at ST36 was mainly associated with action and perception. Conclusion: Our results provide a brain atlas for acupuncture at ST36, which, besides offering a better understanding of the underlying neural mechanisms, also provides the possibility of future precision therapies.

8.
Front Neurosci ; 17: 1159883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065925

RESUMO

Background: Structural changes occur in brain regions involved in cortico-basal ganglia networks in idiopathic blepharospasm (iBSP); whether these changes influence the function connectivity patterns of cortico-basal ganglia networks remains largely unknown. Therefore, we aimed to investigate the global integrative state and organization of functional connections of cortico-basal ganglia networks in patients with iBSP. Methods: Resting-state functional magnetic resonance imaging data and clinical measurements were acquired from 62 patients with iBSP, 62 patients with hemifacial spasm (HFS), and 62 healthy controls (HCs). Topological parameters and functional connections of cortico-basal ganglia networks were evaluated and compared among the three groups. Correlation analyses were performed to explore the relationship between topological parameters and clinical measurements in patients with iBSP. Results: We found significantly increased global efficiency and decreased shortest path length and clustering coefficient of cortico-basal ganglia networks in patients with iBSP compared with HCs, however, such differences were not observed between patients with HFS and HCs. Further correlation analyses revealed that these parameters were significantly correlated with the severity of iBSP. At the regional level, the functional connectivity between the left orbitofrontal area and left primary somatosensory cortex and between the right anterior part of pallidum and right anterior part of dorsal anterior cingulate cortex was significantly decreased in patients with iBSP and HFS compared with HCs. Conclusion: Dysfunction of the cortico-basal ganglia networks occurs in patients with iBSP. The altered network metrics of cortico-basal ganglia networks might be served as quantitative markers for evaluation of the severity of iBSP.

9.
Psychol Med ; 53(10): 4464-4473, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35604047

RESUMO

BACKGROUND: Although many previous studies reported structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy (ECT) in major depressive disorder (MDD), yet the exact roles of both areas for antidepressant effects are still controversial. METHODS: In the current study, segmentation of amygdala and hippocampal sub-regions was used to investigate the longitudinal changes of volume, the relationship between volume and antidepressant effects, and prediction performances for ECT in MDD patients before and after ECT using two independent datasets. RESULTS: As a result, MDD patients showed selectively and consistently increased volume in the left lateral nucleus, right accessory basal nucleus, bilateral basal nucleus, bilateral corticoamygdaloid transition (CAT), bilateral paralaminar nucleus of the amygdala, and bilateral hippocampus-amygdala transition area (HATA) after ECT in both datasets, whereas marginally significant increase of volume in bilateral granule cell molecular layer of the head of dentate gyrus, the bilateral head of cornu ammonis (CA) 4, and left head of CA 3. Correlation analyses revealed that increased volume of left HATA was significantly associated with antidepressant effects after ECT. Moreover, volumes of HATA in the MDD patients before ECT could be served as potential biomarkers to predict ECT remission with the highest accuracy of 86.95% and 82.92% in two datasets (The predictive models were trained on Dataset 2 and the sensitivity, specificity and accuracy of Dataset 2 were obtained from leave-one-out-cross-validation. Thus, they were not independent and very likely to be inflated). CONCLUSIONS: These results not only suggested that ECT could selectively induce structural plasticity of the amygdala and hippocampal sub-regions associated with antidepressant effects of ECT in MDD patients, but also provided potential biomarkers (especially HATA) for effectively and timely interventions for ECT in clinical applications.


Assuntos
Transtorno Depressivo Maior , Eletroconvulsoterapia , Humanos , Transtorno Depressivo Maior/terapia , Eletroconvulsoterapia/métodos , Imageamento por Ressonância Magnética , Resultado do Tratamento , Hipocampo/diagnóstico por imagem , Tonsila do Cerebelo/diagnóstico por imagem , Biomarcadores , Antidepressivos
10.
Brain ; 146(4): 1542-1553, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36130317

RESUMO

Blepharospasm is traditionally thought to be a movement disorder that results from basal ganglia dysfunction. Recently, accumulating morphometric studies have revealed structural alterations outside the basal ganglia, such as in the brainstem, cerebellum and sensorimotor cortex, suggesting that blepharospasm may result from network disorders. However, the temporal and causal relationships between structural alterations and whether there are disease duration-related hierarchical structural changes in these patients remain largely unknown. Structural MRI was performed in 62 patients with blepharospasm, 62 patients with hemifacial spasm and 62 healthy controls to assess the structural alterations using voxel-based morphology and structural covariance networks. The use of the causal structural covariance network, modularity analysis and functional decoding were subsequently performed to map the causal effect of grey matter change pattern, hierarchical topography and functional characterizations of the structural network throughout the disease duration of blepharospasm. Greater grey matter volume in the left and right supplementary motor areas was identified in patients with blepharospasm compared to that in patients with hemifacial spasm and healthy controls, whereas no significant difference was identified between patients with hemifacial spasm and healthy controls. In addition, increased grey matter volume covariance between the right supplementary motor area and right brainstem, left superior frontal gyrus, left supplementary motor area and left paracentral gyrus was found in patients with blepharospasm compared to healthy controls. Further causal structural covariance network, modularity analysis and functional decoding showed that the right supplementary motor area served as a driving core in patients with blepharospasm, extending greater grey matter volume to areas in the cortico-basal ganglia-brainstem motor pathway and cortical regions in the vision-motor integration pathway. Taken together, our results suggest that the right supplementary motor area is an early and important pathologically impaired region in patients with blepharospasm. With a longer duration of blepharospasm, increased grey matter volume extends from the right supplementary motor area to the cortico-basal ganglia motor and visual-motor integration pathways, showing a hierarchy of structural abnormalities in the disease progression of blepharospasm, which provides novel evidence to support the notion that blepharospasm may arise from network disorders and is associated with a wide range of grey matter abnormalities.


Assuntos
Blefarospasmo , Espasmo Hemifacial , Córtex Motor , Humanos , Córtex Motor/diagnóstico por imagem , Blefarospasmo/diagnóstico por imagem , Encéfalo , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética
11.
J Alzheimers Dis ; 90(1): 173-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093705

RESUMO

BACKGROUND: Although acupuncture is widely used to improve cognitive and memory in the amnesic mild cognitive impairment (aMCI) patients with impressive effectiveness, its neural mechanism remains largely unclear. OBJECTIVE: We aimed to explore functional magnetic resonance imaging (fMRI) mechanism of acupuncture for aMCI. METHODS: A randomized, controlled, single-blind research was performed. A total of 46 aMCI patients were randomly assigned into verum and sham acupuncture group, who received a total of 24 times treatments (3 times/week, 8 weeks). Clinical evaluation and fMRI scanning were performed at baseline and after treatment for all aMCI patients. The interaction effects and inter-group effects of regional homogeneity (ReHo) were performed using mixed effect models, and the correlations between clinical improvement and neuroimaging changes before and after verum acupuncture treatment were analyzed using Pearson correlations. RESULTS: As a result, interaction effects showed increased ReHo value in left dorsal lateral prefrontal cortex (DLPFC), increased functional connectivity between left DLPFC and left precuneus, and decreased functional connectivity between left DLPFC and left inferior temporal gyrus after verum acupuncture but inversely after sham acupuncture in the aMCI. Condition effects showed increased ReHo in right lingual gyrus, and bilateral post-central gyrus after verum and sham acupuncture in the aMCI. In addition, the changed Montreal Cognitive Assessment scores in verum acupuncture group were significantly correlated with changed ReHo values in left DLPFC. CONCLUSION: Together, our findings further confirmed that acupuncture could be used as a promising complementary therapy for aMCI by modulating function of left DLPFC to improve cognitive symptoms.


Assuntos
Terapia por Acupuntura , Disfunção Cognitiva , Humanos , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/terapia , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/patologia , Método Simples-Cego
12.
Front Aging Neurosci ; 14: 799260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572140

RESUMO

Although previous studies identified a similar topography pattern of structural and functional delineations in human middle temporal gyrus (MTG) using healthy adults, trajectories of MTG sub-regions across lifespan remain largely unknown. Herein, we examined gray matter volume (GMV) and resting-state functional connectivity (RSFC) using datasets from the Nathan Kline Institute (NKI), and aimed to (1) investigate structural and functional trajectories of MTG sub-regions across the lifespan; and (2) assess whether these features can be used as biomarkers to predict individual's chronological age. As a result, GMV of all MTG sub-regions followed U-shaped trajectories with extreme age around the sixth decade. The RSFC between MTG sub-regions and many cortical brain regions showed inversed U-shaped trajectories, whereas RSFC between MTG sub-regions and sub-cortical regions/cerebellum showed U-shaped way, with extreme age about 20 years earlier than those of GMV. Moreover, GMV and RSFC of MTG sub-regions could be served as useful features to predict individual age with high estimation accuracy. Together, these results not only provided novel insights into the dynamic process of structural and functional roles of MTG sub-regions across the lifespan, but also served as useful biomarkers to age prediction.

13.
J Neurol ; 269(1): 389-398, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34297178

RESUMO

BACKGROUND: Advanced structural analyses are increasingly being highly valued to uncover pathophysiological understanding of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Therefore, we aimed to explore whether and how antibody-mediated NMDAR dysfunction affected cortical and sub-cortical brain morphology and their relationship with clinical symptoms. METHODS: We performed surface-based morphometry analyses, hippocampal segmentation, and correlational analyses in 24 patients with anti-NMDAR encephalitis after acute disease stage and 30 normal controls (NC) in this case-control study. RESULTS: Patients showed significantly decreased cortical alterations mainly in language network (LN) and default mode network (DMN), as well as decreased gray matter volume in left cornu ammonis 1 (CA1) body of hippocampus. Further correlation analyses showed that the decreased cortical thickness in the right superior frontier gyrus was associated with decreased cognitive scores, the decreased cortical volume in the right pars triangulari and decreased surface area in the right pars operculari were associated with decreased memory scores, whereas decreased gray matter volume in the left CA1 body was significantly correlated with longer time between first symptom and imaging in the patients. CONCLUSION: These results suggested that cognitive impairments resulted from long-term sequelae of the encephalitis were mainly associated with cortical alterations in LN and DMN and sub-cortical atrophy of left CA1 body, which can be served as effective features to assess disease progression in clinical routine examination.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Disfunção Cognitiva , Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico por imagem , Estudos de Casos e Controles , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
14.
Comput Biol Med ; 140: 105109, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34891097

RESUMO

BACKGROUND: Learning-based methods have achieved remarkable performances on depth estimation. However, the premise of most self-learning and unsupervised learning methods is built on rigorous, geometrically-aligned stereo rectification. The performances of these methods degrade when the rectification is not accurate. Therefore, we explore an approach for unsupervised depth estimation from stereo images that can handle imperfect camera parameters. METHODS: We propose an unsupervised deep convolutional network that takes rectified stereo image pairs as input and outputs corresponding dense disparity maps. First, a new vertical correction module is designed for predicting a correction map to compensate for the imperfect geometry alignment. Second, the left and right images, which are reconstructed based on the input image pair and corresponding disparities as well as the vertical correction maps, are regarded as the outputs of the generative term of the generative adversarial network (GAN). Then, the discriminator term of the GAN is used to distinguish the reconstructed images from the original inputs to force the generator to output increasingly realistic images. In addition, a residual mask is introduced to exclude pixels that conflict with the appearance of the original image in the loss calculation. RESULTS: The proposed model is validated on the publicly available Stereo Correspondence and Reconstruction of Endoscopic Data (SCARED) dataset and the average MAE is 3.054 mm. CONCLUSION: Our model can effectively handle imperfect rectified stereo images for depth estimation.

15.
Comput Methods Programs Biomed ; 212: 106456, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34656013

RESUMO

BACKGROUND AND OBJECTIVES: Bone age assessment (BAA) is widely used in determination of discrepancy between skeletal age and chronological age. Manual approaches are complicated which require experienced experts, while existing automatic approaches are perplexed with small and imbalanced samples which is a big challenge in deep learning. METHODS: In this study, we proposed a new deep learning based method to improve the BAA training in both pre-training and training architecture. In pre-training, we proposed a framework using a new distance metric of cosine distance in the framework of optimal transport for data augmentation (CNN-GAN-OTD). In the training architecture, we explored the order of gender label and bone age information, supervised and semi-supervised training. RESULTS: We found that the training architecture with the CNN-GAN-OTD based data augmentation and supervised gender-last classification with supervised Inception v3 network yielded the best assessment (mean average error of 4.23 months). CONCLUSIONS: The proposed data augmentation framework could be a potential built-in component of general deep learning networks and the training strategy with different label order could inspire more and deeper consideration of label priority in multi-label tasks.


Assuntos
Redes Neurais de Computação
16.
Front Hum Neurosci ; 15: 694919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489662

RESUMO

The neural mechanisms of acupuncture are not well-understood. Over the past decades, an increasing number of studies have used MRI to investigate the response of the brain to acupuncture. The current review aims to provide an update on acupuncture therapy in disease. The PubMed, Embase, Web of Science, and Cochrane Library databases were searched from inception to January 31, 2021. Article selection and data extraction were conducted by two review authors. A total of 107 publications about MRI in acupuncture were included, the collective findings of which were as follows: (1) stroke and GB34 (Yanglingquan) are the most studied disease and acupoint. Related studies suggested that the mechanism of acupuncture treatment for stroke may associate with structural and functional plasticity, left and right hemispheres balance, and activation of brain areas related to movement and cognition. GB34 is mainly used in stroke and Parkinson's disease, which mainly activates brain response in the premotor cortex, the supplementary motor area, and the supramarginal gyrus; (2) resting-state functional MRI (rs-fMRI) and functional connectivity (FC) analysis are the most frequently used approaches; (3) estimates of efficacy and brain response to acupuncture depend on the type of sham acupuncture (SA) used for comparison. Brain processing after acupuncture differs between patients and health controls (HC) and occurs mainly in disorder-related areas. Factors that influence the effect of acupuncture include depth of needling, number and locations of acupoints, and deqi and expectation effect, each contributing to the brain response. While studies using MRI have increased understanding of the mechanism underlying the effects of acupuncture, there is scope for development in this field. Due to the small sample sizes, heterogeneous study designs, and analytical methods, the results were inconsistent. Further studies with larger sample sizes, careful experimental design, multimodal neuroimaging techniques, and standardized methods should be conducted to better explain the efficacy and specificity of acupuncture, and to prepare for accurate efficacy prediction in the future.

17.
Front Psychiatry ; 12: 670739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489749

RESUMO

Accumulating studies had been performed using magnetic resonance imaging (MRI) to understand the neural mechanism of acupuncture therapy for depression. However, inconsistencies remain due to differences in research designs and MRI analytical methods. Therefore, we aim to summarize the current MRI research and provide useful information for further research by identifying papers published in English and Chinese about MRI studies on acupuncture for depression up to November 2020. A total of 22 studies met the inclusion criteria, including 810 depression patients and 416 health controls (HCs). The applied designs of these studies are mainly random control trial and pre-post designs. The MRI analytical methods are mainly (fractional) amplitude of low-frequency fluctuation (fALFF/ALFF) and functional connectivity (FC), whereas a small subset of studies used voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). The most consistent functional MRI (fMRI) results showed increased N-acetylaspartate/creatine (NAA/Cr) ratios, increased ALFF in the right precuneus, decreased ALFF in the inferior frontal gyrus (IFG), and increased FC of the anterior cingulate cortex (ACC). In contrast, no significant neurological changes were identified in any of the DTI or VBM studies. However, clear, reliable conclusions cannot be drawn due to the use of different designs, analytical methods, seed points selected, types of depression, acupuncture points, and so on. Improved report specifications, well-designed studies, consistent analytical methods, and larger sample sizes will enable the field to better elucidate the underlying mechanisms of acupuncture in depressed patients.

18.
Front Aging Neurosci ; 13: 627919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867968

RESUMO

Background: Voxel-based morphometry (VBM) has been widely used to investigate structural alterations in amnesia mild cognitive impairment (aMCI). However, inconsistent results have hindered our understanding of the exact neuropathology related to aMCI. Objectives: Our aim was to systematically review the literature reporting VBM on aMCI to elucidate consistent gray matter alterations, their functional characterization, and corresponding co-activation patterns. Methods: The PubMed, Web of Science, and EMBASE databases were searched for VBM studies on aMCI published from inception up to June 2020. Peak coordinates were extracted from clusters that showed significant gray matter differences between aMCI patients and healthy controls (HC). Meta-analysis was performed using seed-based d mapping with the permutation of subject images (SDM-PSI), a newly improved meta-analytic method. Functional characterization and task-based co-activation patterns using the BrainMap database were performed on significant clusters to explore their functional roles. Finally, VBM was performed based on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to further support the findings. Results: A total of 31 studies with 681 aMCI patients and 837 HC were included in this systematic review. The aMCI group showed significant gray matter atrophy in the left amygdala and right hippocampus, which was consistent with results from the ADNI dataset. Functional characterization revealed that these regions were mainly associated with emotion, cognition, and perception. Further, meta-regression analysis demonstrated that gray matter atrophy in the left inferior frontal gyrus and the left angular gyrus was significantly associated with cognitive impairment in the aMCI group. Conclusions: The findings of gray matter atrophy in the left amygdala and right hippocampus are highly consistent and robust, and not only offer a better understanding of the underlying neuropathology but also provide accurate potential biomarkers for aMCI.

19.
Brain Imaging Behav ; 15(4): 2159-2167, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33155171

RESUMO

Although numerous studies have revealed the structural and functional alterations in major depressive disorder (MDD) using unimodal diffusion magnetic resonance imaging (MRI) or functional MRI, however, the potential associations between changed microstructure and corresponding functional activities in the MDD has been largely uninvestigated. Herein, 27 medication-free MDD patients and 54 gender-, age-, and educational level-matched healthy controls (HC) were used to investigate the concurrent alterations of white matter microstructure and functional activities using tract-based spatial statistics (TBSS) analyses, fractional amplitude of low-frequency fluctuation (fALFF), and degree centrality (DC). The TBSS analyses revealed significantly decreased fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF I) in the MDD patients compared to HC. Correlation analyses showed that decreased FA in the SLF I was significantly correlated with fALFF in left pre/postcentral gyrus and binary, weighted DC in right posterior cerebellum. Moreover, the fALFF in left pre/postcentral gyrus significantly reduced in MDD patients while binary and weighted DC in right posterior cerebellum significantly increased in MDD patients. Our results revealed concurrent structural and functional changes in MDD patients suggesting that the underlying structural disruptions are an important indicator of functional abnormalities.


Assuntos
Transtorno Depressivo Maior , Substância Branca , Anisotropia , Cerebelo , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
20.
Brain Imaging Behav ; 15(3): 1211-1221, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32700254

RESUMO

In addition to cognitive impairments, depression symptoms were reported in subcortical vascular mild cognitive impairment. Although hippocampal alterations were associated with cognitive decline in subcortical vascular mild cognitive impairment, the neural mechanism underlying depression symptoms remains unclear. Thus, a cohort of 18 patients with depression symptoms, 17 patients without depression symptoms, and 23 normal controls was used. Functionally, significantly altered resting-state functional connectivity between hippocampal emotional sub-region and right posterior cingulate cortex, between hippocampal cognitive sub-region and right inferior parietal gyrus and between hippocampal perceptual sub-region and left inferior temporal gyrus were identified among three groups. Structurally, significantly altered structural associations between hippocampal emotional sub-region and 6 frontal regions/right pole part of superior temporal gyrus/right inferior occipital gyrus, between hippocampal cognitive sub-region and right orbital part of inferior frontal gyrus /right anterior cingulate cortex, and between hippocampal perceptual and right orbital part of inferior frontal gyrus / left inferior temporal gyrus / left thalamus were identified among the three groups. Further analyses also showed correlations between functional connectivity and depression symptoms and/or cognitive impairments of patients. Together, these results showed different patterns of functional and structural alterations of the hippocampal sub-regions in the subcortical vascular mild cognitive impairment with and without depression, which might be specially associated with the depression symptoms and cognitive impairments in these patients.


Assuntos
Disfunção Cognitiva , Depressão , Córtex Cerebral , Disfunção Cognitiva/diagnóstico por imagem , Depressão/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA