Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 209: 108526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537383

RESUMO

Drought stress inhibits seed germination, plant growth and development of tobacco, and seriously affects the yield and quality of tobacco leaves. However, the molecular mechanism underlying tobacco drought stress response remains largely unknown. In this study, integrated analysis of transcriptome and metabolome was performed on the germinated seeds of a cultivated variety K326 and its EMS mutagenic mutant M28 with great drought tolerance. The result showed that drought stress inhibited seed germination of the both varieties, while the germination rate of M28 was faster than that of K326 under drought stress. Besides, the levels of phytohormone ABA, GA19, and zeatin were increased by drought stress in M28. Five vital pathways were identified through integrated transcriptomic and metabolomic analysis, including zeatin biosynthesis, aspartate and glutamate synthesis, phenylamine metabolism, glutathione metabolism, and phenylpropanoid synthesis. Furthermore, 20 key metabolites in the above pathways were selected for further analysis of gene modular-trait relationship, and then four highly correlated modules were found. Then analysis of gene expression network was carried out of Top30 hub gene of these four modules, and 9 key candidate genes were identified, including HSP70s, XTH16s, APX, PHI-1, 14-3-3, SCP, PPO. In conclusion, our study uncovered some key drought-responsive pathways and genes of tobacco during seeds germination, providing new insights into the regulatory mechanisms of tobacco drought stress response.


Assuntos
Germinação , Transcriptoma , Germinação/genética , Secas , Zeatina/metabolismo , Sementes/metabolismo , Metaboloma , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
2.
Biochem Biophys Rep ; 37: 101641, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288283

RESUMO

Cadmium (Cd) contamination presents a significant challenge in global agriculture. This study explores the efficacy of chemical induction, specifically using sodium chloride (NaCl), to limit Cd uptake in tobacco (Nicotiana tabacum) and assesses its impact on essential divalent metal ions (DMIs). We conducted a comprehensive analysis encompassing ion absorption, root histology, and biochemistry to understand the influence of this method. Our results revealed that NaCl induction led to a notable 30 % decrease in Cd absorption, while maintaining minimal impact on zinc (Zn) uptake. Intriguingly, the absence of essential DMIs, such as calcium (Ca), magnesium (Mg), and Zn, was found to diminish the plant's capacity to absorb Cd. Furthermore, moderate NaCl induction resulted in an increased diameter of the root stele and enhanced lignin content, indicating a restriction of Cd absorption through the apoplastic pathway. Conversely, a compensatory absorption mechanism via the symplastic pathway appeared to be activated in the absence of essential elements. These findings highlight the potential of chemical induction as a strategy to mitigate agricultural Cd risks, offering insights into the complex interplay between plant ion transport pathways and metal uptake regulation.

3.
Plant Cell Rep ; 43(1): 25, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38155260

RESUMO

KEY MESSAGE: NtTAS14-like1 enhances osmotic tolerance through coordinately activating the expression of osmotic- and ABA-related genes. Osmotic stress is one of the most important limiting factors for tobacco (Nicotiana tabacum) growth and development. Dehydrin proteins are widely involved in plant adaptation to osmotic stress, but few of these proteins have been functionally characterized in tobacco. Here, to identify genes required for osmotic stress response in tobacco, an encoding dehydrin protein gene NtTAS14-like1 was isolated based on RNA sequence data. The expression of NtTAS14-like1 was obviously induced by mannitol and abscisic acid (ABA) treatments. Knock down of NtTAS14-like1 expression reduced osmotic tolerance, while overexpression of NtTAS14-like1 conferred tolerance to osmotic stress in transgenic tobacco plants, as determined by physiological analysis of the relative electrolyte leakage and malonaldehyde accumulation. Further expression analysis by quantitative real-time PCR indicated that NtTAS14-like1 participates in osmotic stress response possibly through coordinately activating osmotic- and ABA-related genes expression, such as late embryogenesis abundant (NtLEA5), early responsive to dehydration 10C (NtERD10C), calcium-dependent protein kinase 2 (NtCDPK2), ABA-responsive element-binding protein (NtAREB), ABA-responsive element-binding factor 1 (NtABF1), dehydration-responsive element-binding genes (NtDREB2A), xanthoxin dehydrogenase/reductase (NtABA2), ABA-aldehyde oxidase 3 (NtAAO3), 9-cis-epoxycarotenoid dioxygenase (NtNCED3). Together, this study will facilitate to improve our understandings of molecular and functional properties of plant TAS14 proteins and to improve genetic evidence on the involvement of the NtTAS14-like1 in osmotic stress response of tobacco.


Assuntos
Nicotiana , Osmorregulação , Nicotiana/genética , Desidratação , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Pressão Osmótica/fisiologia , Regulação da Expressão Gênica de Plantas/genética
4.
BMC Plant Biol ; 22(1): 369, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35879667

RESUMO

BACKGROUND: Cold is one of the main abiotic stresses that severely affect plant growth and development, and crop productivity as well. Transcriptional changes during cold stress have already been intensively studied in various plant species. However, the gene networks involved in the regulation of differential cold tolerance between tobacco varieties with contrasting cold resistance are quite limited. RESULTS: Here, we conducted multiple time-point transcriptomic analyses using Tai tobacco (TT, cold susceptibility) and Yan tobacco (YT, cold resistance) with contrasting cold responses. We identified similar DEGs in both cultivars after comparing with the corresponding control (without cold treatment), which were mainly involved in response to abiotic stimuli, metabolic processes, kinase activities. Through comparison of the two cultivars at each time point, in contrast to TT, YT had higher expression levels of the genes responsible for environmental stresses. By applying Weighted Gene Co-Expression Network Analysis (WGCNA), we identified two main modules: the pink module was similar while the brown module was distinct between the two cultivars. Moreover, we obtained 100 hub genes, including 11 important transcription factors (TFs) potentially involved in cold stress, 3 key TFs in the brown module and 8 key TFs in the pink module. More importantly, according to the genetic regulatory networks (GRNs) between TFs and other genes or TFs by using GENIE3, we identified 3 TFs (ABI3/VP1, ARR-B and WRKY) mainly functioning in differential cold responses between two cultivars, and 3 key TFs (GRAS, AP2-EREBP and C2H2) primarily involved in cold responses. CONCLUSION: Collectively, our study provides valuable resources for transcriptome- based gene network studies of cold responses in tobacco. It helps to reveal how key cold responsive TFs or other genes are regulated through network. It also helps to identify the potential key cold responsive genes for the genetic manipulation of tobacco cultivars with enhanced cold tolerance in the future.


Assuntos
Redes Reguladoras de Genes , Nicotiana , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Nicotiana/genética , Transcriptoma
5.
Front Plant Sci ; 13: 828042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548319

RESUMO

Tobacco is a model plant for studying flower coloration. Flavonoids and carotenoids were reported to contribute to the flower color in many plants. We investigated the mechanism underlying flower color formation in tobacco by comparing the profiling flavonoids and carotenoids between various species Nicotiana tabacum L. and Nicotiana rustica L., as their flowers commonly presented red (pink) and yellow (orange), respectively. The metabolomes were conducted by UPLC-ESI-MS/MS system. The main findings were as follows: (1) A total of 31 flavonoids and 36 carotenoids were identified in all four cultivars involved in N. tabacum and N. rustica. (2) Flavonoids and carotenoids tended to concentrate in the red flowers (N. tabacum) and yellow flowers (N. rustica), respectively. (3) About eight flavonoids and 12 carotenoids were primarily screened out for metabolic biomarkers, such as the robust biomarker involving kaempferol-3-o-rut, quercetin-glu, rutin, lutein, and ß-carotene. This is the first research of systematic metabolome involving both flavonoids and carotenoids in tobacco flower coloration. The metabolic mechanism concluded that flavonoids and carotenoids mainly contributed to red (pink) and yellow (orange) colors of the tobacco flowers, respectively. Our finding will provide essential insights into characterizing species and modifying flower color in tobacco breeding through genetic improvement or regulation of featured metabolic synthesis.

6.
Front Plant Sci ; 13: 1067076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743571

RESUMO

Drought stress usually causes huge economic losses for tobacco industries. Drought stress exhibits multifaceted impacts on tobacco systems through inducing changes at different levels, such as physiological and chemical changes, changes of gene transcription and metabolic changes. Understanding how plants respond and adapt to drought stress helps generate engineered plants with enhanced drought resistance. In this study, we conducted multiple time point-related physiological, biochemical,transcriptomic and metabolic assays using K326 and its derived mutant 28 (M28) with contrasting drought tolerance. Through integrative analyses of transcriptome and metabolome,we observed dramatic changes of gene expression and metabolic profiles between M28 and K326 before and after drought treatment. we found that some of DEGs function as key enzymes responsible for ABA biosynthesis and metabolic pathway, thereby mitigating impairment of drought stress through ABA signaling dependent pathways. Four DEGs were involved in nitrogen metabolism, leading to synthesis of glutamate (Glu) starting from NO-3 /NO-2 that serves as an indicator for stress responses. Importantly, through regulatory network analyses, we detected several drought induced TFs that regulate expression of genes responsible for ABA biosynthesis through network, indicating direct and indirect involvement of TFs in drought responses in tobacco. Thus, our study sheds some mechanistic insights into how plant responding to drought stress through transcriptomic and metabolic changes in tobacco. It also provides some key TF or non-TF gene candidates for engineering manipulation for breeding new tobacco varieties with enhanced drought tolerance.

7.
Plant Physiol ; 186(3): 1706-1720, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33871656

RESUMO

In plants, reactive oxygen species (ROS) produced following the expression of the respiratory burst oxidase homolog (Rboh) gene are important regulators of stress responses. However, little is known about how plants acclimate to salt stress through the Rboh-derived ROS signaling pathway. Here, we showed that a 400-bp fragment of the tobacco (Nicotiana tabacum) NtRbohE promoter played a critical role in the salt response. Using yeast one-hybrid (Y1H) screens, NtbHLH123, a bHLH transcription factor, was identified as an upstream partner of the NtRbohE promoter. These interactions were confirmed by Y1H, electrophoretic mobility assay, and chromatin immunoprecipitation assays. Overexpression of NtbHLH123 resulted in greater resistance to salt stress, while NtbHLH123-silenced plants had reduced resistance to salt stress. We also found that NtbHLH123 positively regulates the expression of NtRbohE and ROS production soon after salt stress treatment. Moreover, knockout of NtRbohE in the 35S::NtbHLH123 background resulted in reduced expression of ROS-scavenging and salt stress-related genes and salt tolerance, suggesting that NtbHLH123-regulated salt tolerance is dependent on the NtbHLH123-NtRbohE signaling pathway. Our data show that NtbHLH123 is a positive regulator and acts as a molecular switch to control a Rboh-dependent mechanism in response to salt stress in plants.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Tolerância ao Sal/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo
8.
Planta ; 252(1): 13, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32621079

RESUMO

MAIN CONCLUSION: NtALS1 is specifically expressed in glandular trichomes, and can improve the content of acylsugars in tobacco. ABTRACT: The glandular trichomes of many species in the Solanaceae family play an important role in plant defense. These epidermal outgrowths exhibit specialized secondary metabolism, including the production of structurally diverse acylsugars that function in defense against insects and have substantial developmental potential for commercial uses. However, our current understanding of genes involved in acyl chain biosynthesis of acylsugars remains poor in tobacco. In this study, we identified three acetolactate synthase (ALS) genes in tobacco through homology-based gene prediction using Arabidopsis ALS. Quantitative real-time PCR (qRT-PCR) and tissue distribution analyses suggested that NtALS1 was highly expressed in the tips of glandular trichomes. Subcellular localization analysis showed that the NtALS1 localized to the chloroplast. Moreover, in the wild-type K326 variety background, we generated two ntals1 loss-of-function mutants using the CRISPR-Cas9 system. Acylsugars contents in the two ntals1 mutants were significantly lower than those in the wild type. Through phylogenetic tree analysis, we also identified NtALS1 orthologs that may be involved in acylsugar biosynthesis in other Solanaceae species. Taken together, these findings indicate a functional role for NtALS1 in acylsugar biosynthesis in tobacco.


Assuntos
Acetolactato Sintase/genética , Nicotiana/metabolismo , Açúcares/metabolismo , Tricomas/enzimologia , Acetolactato Sintase/metabolismo , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas , Cloroplastos/enzimologia , Diploide , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética , Tricomas/genética
9.
Environ Sci Pollut Res Int ; 27(30): 37410-37418, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32399872

RESUMO

Cadmium (Cd) pollution threatens agricultural security worldwide. This study tested the efficacy of priming chemicals to decrease Cd uptake by tobacco plants (Nicotiana tabacum). After initial screening from nine different chemicals (NaCl, Cd(CH3COO)2, Cd(NO3)2, CdCl2, KHNO3, polyethylene glycol 6000 (PEG-6000), indole-3-acetic acid (IAA), ß-aminobutyric acid (BABA), and glutathione (GSH)), NaCl and PEG-6000 were further investigated because of their low risks to plant growth and efficiency to Cd reduction. Priming procedures (concentrations) were optimized for both chemicals and the best one (100 mM NaCl) was used to test both soil and hydroponic media. The results showed 31.3% lower Cd concentrations in shoots after priming with 100 mM NaCl. Phenotype parameters of the plants were also measured and showed no significant impacts of the priming procedures on the shoot biomass and the uptakes of nitrogen (N), phosphorus (P), and potassium (K), nor the photosynthetic capacity (net photosynthesis rate (Pn) and chlorophyll concentration (SPAD)). Histological observations of the roots showed a significant increase of the stele diameter after NaCl priming and a subsequent negative correlation between shoot Cd concentration and stele diameter was found after NaCl priming at different levels. This study confirmed 100 mM NaCl as an efficient priming treatment to decrease Cd uptake and the coarsening of the root stele was identified as a potential explanation for the observed decrease of Cd in tobacco shoots.


Assuntos
Cádmio , Poluentes do Solo , Clorofila , Fotossíntese , Raízes de Plantas , Cloreto de Sódio , Nicotiana
10.
Plant Biotechnol J ; 18(12): 2444-2455, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32445603

RESUMO

Drought stress often limits plant growth and global crop yields. Catalase (CAT)-mediated hydrogen peroxide (H2 O2 ) scavenging plays an important role in the adaptation of plant stress responses, but the transcriptional regulation of the CAT gene in response to drought stress is not well understood. Here, we isolated an APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) domain-containing transcription factor (TF), NtERF172, which was strongly induced by drought, abscisic acid (ABA) and H2 O2 , from tobacco (Nicotiana tabacum) by yeast one-hybrid screening. NtERF172 localized to the nucleus and acted as a transcriptional activator. Chromatin immunoprecipitation, yeast one-hybrid assays, electrophoretic mobility shift assays and transient expression analysis assays showed that NtERF172 directly bound to the promoter region of the NtCAT gene and positively regulated its expression. Transgenic plants overexpressing NtERF172 displayed enhanced tolerance to drought stress, whereas suppression of NtERF172 decreased drought tolerance. Under drought stress conditions, the NtERF172-overexpressed lines showed higher catalase activity and lower accumulation of H2 O2 compared with wild-type (WT) plants, while the NtERF172-silenced plants showed the inverse correlation. Exogenous application of amino-1,2,4-triazole (3-AT), an irreversible CAT inhibitor, to the NtERF172-overexpression lines showed decreased catalase activity and drought tolerance, and increased levels of cellular H2 O2 . Knockdown of NtCAT in the NtERF172-overexpression lines displayed a more drought stress-sensitive phenotype than NtERF172-overexpression lines. We propose that NtERF172 acts as a positive factor in drought stress tolerance, at least in part through the regulation of CAT-mediated H2 O2 homeostasis.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Ácido Abscísico , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética
11.
Biochem Biophys Res Commun ; 522(1): 233-239, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31757426

RESUMO

Iron (Fe) is a major micronutrient which influences plant growth, development, quality and yield. Although basic helix-loop-helix (bHLH) transcription factors (TFs) which respond to iron deficiency have been identified, the molecular mechanisms have not been fully elucidated. In this study, a novel bHLH TF, NtbHLH1, was found to be induced by iron deficiency. Further analysis indicated that NtbHLH1 is localized to the nucleus and functions as a transcriptional activator. Moreover, overexpression of NtbHLH1 resulted in longer roots, altered rhizosphere pH and increased ferric-chelate reductase activity in iron deficient conditions. Overall these changes resulted in increased iron uptake relative to wild type plants. NtbHLH1 mutants, on the other hand, had an opposite phenotype. In addition, transcript levels of seven genes associated with iron deficiency response were higher in the NtbHLH1 overexpression transgenic plants and lower in ntbhlh1 relative to the WT under iron deficiency treatment. Taken together, these results demonstrated that NtbHLH1 plays a key role in iron deficiency response and they provide new insights into the molecular basis of iron homeostasis in tobacco.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Homeostase , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Regulação para Cima
12.
Plant Sci ; 280: 314-320, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30824010

RESUMO

The 26S proteasome is a multi-subunit protease controlling most of the cytosolic and nuclear protein turnover, regulating many cellular events in eukaryotes. However, functional modification on this complex remains unclear. Here, we showed a novel mechanism that a SUMO ligase AtMMS21 regulates activity of the 26S proteasome in root development of Arabidopsis. Our in vitro and in vivo data supported that AtMMS21 interacts with RPT2a, a subunit of the 26S proteasome. The mutants of AtMMS21 and RPT2a display similar developmental defect of roots, suggesting their association in this process. In addition, RPT2a is modified by SUMO3, potentially related to AtMMS21. During development, the activity of the 26S proteasome is lower in both mutants of AtMMS21 and RPT2a, compared with that of wild type. Furthermore, the protein level but not the RNA level of RPT2a is decreased in the absence of AtMMS21, implying stability regulation of the proteasome complex through the AtMMS21-RPT2a interaction. Taken together, the current study would improve our understanding on the regulatory mechanism of the 26S proteasome via protein modification in root development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ligases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ligases/genética , Mutação , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Complexo de Endopeptidases do Proteassoma/genética , Sumoilação
13.
Biochem Biophys Res Commun ; 469(3): 535-41, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26692485

RESUMO

Cold stress is a major adverse environmental factor that affects plant growth, development, productivity and quality. In the present study, comparative genome-wide transcriptome analysis on two tobacco (Nicotiana tobacum L.) cultivars, cold-tolerant NC567 and cold-sensitive Taiyan8, was performed using RNA-seq technology. After the first assembly, total length of unigenes is from 101,308,644 to 123,781,795 bp, the N50 length is from 1357 to 1475 bp, and 152,688 unigenes in NC567 and 144,160 unigenes in Taiyan8 were identified, respectively. Functional classification of cold-responsive (COR) genes showed that the genes involved in cell wall metabolism, transcription factors, ubiquitin-proteasome system (UPS) and signaling are over-represented, and the COR genes are specifically induced during cold stress in NC567. Pathway analysis revealed the significant enrichment of the COR genes in plant circadian clock. Taken together, the present study suggested the positive roles of the highly induced expression of the COR genes and the conserved mechanism of circadian clock related genes in tobacco response to cold stress, and provided some valuable genes for crop improvement to cope with cold stress.


Assuntos
Proteínas e Peptídeos de Choque Frio/metabolismo , Resposta ao Choque Frio/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Nicotiana/fisiologia , Proteínas de Plantas/metabolismo , Transcriptoma/fisiologia , Genótipo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA