RESUMO
Comparison of defect-controlled leaching-kinetics modulation of metal-organic frameworks (MOFs) and porous functionalized silica-based materials was performed on the example of a radionuclide and radionuclide surrogate for the first time, revealing an unprecedented readsorption phenomenon. On a series of zirconium-based MOFs as model systems, we demonstrated the ability to capture and retain >99% of the transuranic 241Am radionuclide after 1 week of storage. We report the possibility of tailoring radionuclide release kinetics in MOFs through framework defects as a function of postsynthetically installed organic ligands including cation-chelating crown ether-based linkers. Based on comprehensive analysis using spectroscopy (EXAFS, UV-vis, FTIR, and NMR), X-ray crystallography (single crystal and powder), and theoretical calculations (nine kinetics models and structure simulations), we demonstrated the synergy of radionuclide integration methods, topological restrictions, postsynthetic scaffold modification, and defect engineering. This combination is inaccessible in any other material and highlights the advantages of using well-defined frameworks for gaining fundamental knowledge necessary for the advancement of actinide-based material development, providing a pathway for addressing upcoming challenges in the nuclear waste administration sector.
Assuntos
Estruturas Metalorgânicas , Cinética , Estruturas Metalorgânicas/química , Porosidade , Radioisótopos , Zircônio/químicaRESUMO
Deformation processing of immiscible systems is observed to disrupt thermodynamic equilibrium, often resulting in nonequilibrium microstructures. The microstructural changes including nanostructuring, hierarchical distribution of phases, localized solute supersaturation, and oxygen ingress result from high-strain extended deformation, causing a significant change in mechanical properties. Because of the dynamic evolution of the material under large strain shear load, a detailed understanding of the transformation pathway has not been established. Additionally, the influence of these microstructural changes on mechanical properties is also not well characterized. Here, an immiscible Cu-4 at. % Nb alloy is subjected to a high-strain shear deformation (â¼200); the deformation-induced changes in the morphology, crystal structure, and composition of Cu and Nb phases as a function of total strain are characterized using transmission electron microscopy and atom probe tomography. Furthermore, a multimodal experiment-guided computational approach is used to depict the initiation of deformation by an increase in misorientation boundaries by crystal plasticity-based grain misorientation modeling (strain â¼0.6). Then, co-deformation and nanolamination of Cu and Nb are envisaged by a finite element method-based computational fluid dynamic model with strain ranging from 10 to 200. Finally, the experimentally observed amorphization of the severely sheared supersaturated Cu-Nb-O phase was validated using the first principle-based simulation using density functional theory while highlighting the influence of oxygen ingress during deformation. Furthermore, the nanocrystalline microstructure shows a >2-fold increase in hardness and compressive yield strength of the alloy, elucidating the potential of deformation processing to obtain high-strength low-alloyed metals. Our approach presents a step-by-step evolution of a microstructure in an immiscible alloy undergoing severe shear deformation, which is broadly applicable to materials processing based on friction stir, extrusion, rolling, and surface shear deformation under wear and can be directly applied to understanding material behavior during these processes.
RESUMO
The vapor-liquid-solid (VLS) method is vastly employed to grow hierarchical structures with unique properties. However, key questions remain, such as what controls the branched structures and what the roles of the catalyst droplet size are during the growth. Here, an in-depth understanding of the kinetics of the nucleation, growth, and subsequent coalescence processes of Bi liquid catalyst droplets is provided by direct observation of PbSe branched wire growth in an environmental transmission electron microscope. This brings a kinetic control of the branch density by varying the parameters, such as temperature. In addition, the dependence of the wire growth rate on the catalyst droplet size is revealed, i.e., the smaller the catalyst size the larger the wire growth rate, unlike the wire growth controlled by the Gibbs-Thomson effect, possibly due to different mass transport pathways and atomic surface diffusion. These results extend the fundamental understanding of the VLS growth mechanism of branched structures and benefit the structure design of hierarchical materials with tailored properties.
RESUMO
Porous structured silicon has been regarded as a promising candidate to overcome pulverization of silicon-based anodes. However, poor mechanical strength of these porous particles has limited their volumetric energy density towards practical applications. Here we design and synthesize hierarchical carbon-nanotube@silicon@carbon microspheres with both high porosity and extraordinary mechanical strength (>200 MPa) and a low apparent particle expansion of ~40% upon full lithiation. The composite electrodes of carbon-nanotube@silicon@carbon-graphite with a practical loading (3 mAh cm-2) deliver ~750 mAh g-1 specific capacity, <20% initial swelling at 100% state-of-charge, and ~92% capacity retention over 500 cycles. Calendered electrodes achieve ~980 mAh cm-3 volumetric capacity density and <50% end-of-life swell after 120 cycles. Full cells with LiNi1/3Mn1/3Co1/3O2 cathodes demonstrate >92% capacity retention over 500 cycles. This work is a leap in silicon anode development and provides insights into the design of electrode materials for other batteries.
RESUMO
We grew binary PbSe nanowires in an in situ gas-heating cell in a transmission electron microscope and elucidated species dependent mass transport pathways and key correlations among supersaturation, nucleation, and growth kinetics, thereby enabling morphological and compositional control of nanowires with tailored properties.
RESUMO
Nanocrystalline (NC) metals are stronger and more radiation-tolerant than their coarse-grained (CG) counterparts, but they often suffer from poor thermal stability as nanograins coarsen significantly when heated to 0.3 to 0.5 of their melting temperature (Tm). Here, we report an NC austenitic stainless steel (NC-SS) containing 1 at% lanthanum with an average grain size of 45 nm and an ultrahigh yield strength of ~2.5 GPa that exhibits exceptional thermal stability up to 1000 °C (0.75 Tm). In-situ irradiation to 40 dpa at 450 °C and ex-situ irradiation to 108 dpa at 600 °C produce neither significant grain growth nor void swelling, in contrast to significant void swelling of CG-SS at similar doses. This thermal stability is due to segregation of elemental lanthanum and (La, O, Si)-rich nanoprecipitates at grain boundaries. Microstructure dependent cluster dynamics show grain boundary sinks effectively reduce steady-state vacancy concentrations to suppress void swelling upon irradiation.
RESUMO
Nanostructured silicon is a promising anode material for high-performance lithium-ion batteries, yet scalable synthesis of such materials, and retaining good cycling stability in high loading electrode remain significant challenges. Here we combine in-situ transmission electron microscopy and continuum media mechanical calculations to demonstrate that large (>20 µm) mesoporous silicon sponge prepared by the anodization method can limit the particle volume expansion at full lithiation to ~30% and prevent pulverization in bulk silicon particles. The mesoporous silicon sponge can deliver a capacity of up to ~750 mAh g(-1) based on the total electrode weight with >80% capacity retention over 1,000 cycles. The first cycle irreversible capacity loss of pre-lithiated electrode is <5%. Bulk electrodes with an area-specific-capacity of ~1.5 mAh cm(-2) and ~92% capacity retention over 300 cycles are also demonstrated. The insight obtained from this work also provides guidance for the design of other materials that may experience large volume variation during operations.
RESUMO
Rational design of silicon and carbon nanocomposite with a special topological feature has been demonstrated to be a feasible way for mitigating the capacity fading associated with the large volume change of silicon anode in lithium ion batteries. Although the lithiation behavior of silicon and carbon as individual components has been well understood, lithium ion transport behavior across a network of silicon and carbon is still lacking. In this paper, we probe the lithiation behavior of silicon nanoparticles attached to and embedded in a carbon nanofiber using in situ TEM and continuum mechanical calculation. We found that aggregated silicon nanoparticles show contact flattening upon initial lithiation, which is characteristically analogous to the classic sintering of powder particles by a neck-growth mechanism. As compared with the surface-attached silicon particles, particles embedded in the carbon matrix show delayed lithiation. Depending on the strength of the carbon matrix, lithiation of the embedded silicon nanoparticles can lead to the fracture of the carbon fiber. These observations provide insights on lithium ion transport in the network-structured composite of silicon and carbon and ultimately provide fundamental guidance for mitigating the failure of batteries due to the large volume change of silicon anodes.