RESUMO
In recent years, lithium oxygen batteries (Li-O2) have received considerable research attention due to their extremely high energy density. However, the poor conductivity and ion conductivity of the discharge product lithium peroxide (Li2O2) result in a high charging overpotential, poor cycling stability, and low charging rate. Therefore, studying and improving catalysts is a top priority. This study focuses on the commonly used heterogeneous catalyst ruthenium (Ru). The local distribution of this catalyst is controlled by using sputtering technology. Moreover, X-ray nanodiffraction is applied to observe the relationship between the decomposition of Li2O2 and the local distribution of Ru. Results show that Li2O2 decomposes homogeneously in liquid systems and heterogeneously in solid-state systems. This study finds that the catalytic effect of Ru is related to electrolyte decomposition and that its soluble byproducts act as electron acceptors or redox mediators, effectively reducing charging overpotential but also shortening the cycle life.
RESUMO
In recent years, the development of electric vehicles and environmental concerns have made necessary improvements in the energy density and safety of lithium-ion batteries. Therefore, the development of all-solid-state lithium-ion batteries (ASSLIBs) has become imperative. One advantage of ASSLIBs is their potential for downsizing with the use of lithium metal as the anode. However, in this study, a garnet-type solid electrolyte (Li6.75La3Zr1.75Ta0.25O12) was used, which has low reactivity with lithium metal. Thus, interface modification using CaCl2 was employed to form a Li-Ca-Cl composite anode. The interfacial resistance was remarkably reduced to 7 Ω cm2, and the symmetric cell exhibited stable cycling for 1200 h at room temperature and a current density of 0.1 mA cm-2. The voltage ranged from ±15 to ±16 mV. The full cell demonstrated a high initial discharge capacity of 149.2 mA h g-1 and a Coulombic efficiency of 98.0% while maintaining a discharge capacity retention of 91.3% after 100 cycles. These findings lay a solid foundation for future commercial applications as interface modification was achieved through a simple spin-coating process using low-cost CaCl2 (0.7 USD g-1).
RESUMO
Next-generation lithium-ion batteries must have high energy density and safety, making the development of all-solid-state batteries imperative. One of the biggest advantages of an all-solid-state lithium-ion battery (ASSLIB) is that its alloy uses lithium metal as an anode while ignoring its flammability and other dangers. Herein, high-conductivity garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZTO) was chosen as the solid electrolyte part of an all-solid-state battery. A composite anode was formed by melting Li and MXene-MAX together, reducing the interface impedance from 566 to 55 Ω cm2. The Li-MXene|LLZTO|LFP full battery displayed a high initial discharge capacity of 163.0 mAh g-1 and a Coulombic efficiency of 97.0% and maintained 90.2% of its discharge capacity over 100 cycles, but it did not maintain a good overpotential. Therefore, the synergistic effect of Li-MXene-Pt will highly improve the performance of the full battery because of its high initial discharge capacity of 150.0 mAh g-1 and Coulombic efficiency of 95.5%, discharge capacity maintained at 93.3% over 100 cycles, and low overpotential of 0.04 V.
RESUMO
This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.
RESUMO
Garnet-type solid-state electrolytes are among the most reassuring candidates for the development of solid-state lithium metal batteries (SSLMB) because of their wide electrochemical stability window and chemical feasibility with lithium. However, issues such as poor physical contact with Li metal tend to limit their practical applications. These problems were addressed using ß-SiC as an additive to the Li anode, resulting in improved wettability over Li6.75 La3 Zr1.75 Ta0.25 O12 (LLZTO) and establishing an improved interfacial contact. At the Li-SiC|LLZTO interface, intimacy was induced by a lithiophilic Li4 SiO4 phase, whereas robustness was attained through the hard SiC phase. The optimized Li-SiC|LLZTO|Li-SiC symmetric cell displayed a low interfacial impedance of 10â Ω cm2 and superior cycling stability at varying current densities up to 5800â h. Moreover, the modified interface could achieve a high critical current density of 4.6â mA cm-2 at room temperature and cycling stability of 1000â h at 3.5â mA cm-2 . The use of mechanically superior materials such as SiC as additives for the preparation of a composite anode may serve as a new strategy for robust garnet-based SSLMB.
RESUMO
The rapid change in population, environment, and climate is accompanied by the food crisis. As a new type of farming, indoor agriculture opens the possibility of addressing this crisis in the future. In this study, a phosphor-converted light-emitting diode (pc-LED), as energy-saving lighting for indoor agriculture, was used to evaluate the response and effect on the growth of Lactuca sativa. Red phosphors, SrLiAl3N4:Eu2+ (SLA) and CaAlSiN3:Eu2+ (CASN), were characterized and analyzed with crystal structure, morphology, and optical properties. Eu2+-doped phosphors provided the red emission of around 650 nm which is highly matched with the absorption of chlorophyll. Under the same luminescence intensity, broader emission of CASN pc-LED demonstrated a 100% increase of photosynthetically active photon flux density and 130% promotion of plant weight than the SLA pc-LED, which reflected the positive result of the carbon fixation. The chlorophyll and nitrate responses have also revealed the effect of broader red light on indoor agriculture.
RESUMO
With magnesium being a cost-effective anode metal compared to the other conventional Li-based anodes in the energy market, it could be a capable source of energy storage. However, Mg-O2 batteries have struggled its way to overcome the poor cycling stability and sluggish reaction kinetics. Therefore, Ru metallic nanoparticles on carbon nanotubes (CNTs) were introduced as a cathode for Mg-O2 batteries, which are known for their inherent electronic properties, large surface area, and increased crystallinity to favor remarkable oxygen reduction reactions and oxygen evolution reactions (ORR and OER). Also, we deployed a first-of-its-kind, conducive mixed electrolyte (CME) (2 M Mg(NO3)2:1 M Mg(TFSI)2/diglyme). Hence, this synergistic incorporation of CME-based Ru/CNT Mg-O2 batteries could unleash long cycle life with low overpotential, excellent reversibility, and high ionic conductivity and also reduces the intrinsic corrosion behavior of Mg anodes. Correspondingly, this novel amalgamation of CME with Ru/CNT cathode has displayed superior cyclic stability of 65 cycles and a maximum discharge potential of 25â¯793 mAh g-1 with a small overvoltage plateau of 1.4 V, noticeably subjugating the findings of conventional single electrolyte (CSE) (1 M Mg(TFSI)2/diglyme). This CME-based Ru/CNT Mg-O2 battery design could have a significant outcome as a future battery technology.
RESUMO
All-solid-state lithium-ion batteries (ASSLIBs) have attracted much attention owing to their high energy density and safety and are known as the most promising next-generation LIBs. The biggest advantage of ASSLIBs is that it can use lithium metal as the anode without any safety concerns. This study used a high-conductivity garnet-type solid electrolyte (Li6.75La3Zr1.75Ta0.25O12, LLZTO) and Li-Ga-N composite anode synthesized by mixing melted Li with GaN. The interfacial resistance was reduced from 589 to 21 Ω cm2, the symmetry cell was stably cycled for 1000 h at a current density of 0.1 mA cm-2 at room temperature, and the voltage range only changed from ±30 to ±40 mV. The full cell of Li-Ga-N|LLZTO|LFP exhibited a high first-cycle discharge capacity of 152.2 mAh g-1 and Coulombic efficiency of 96.5% and still maintained a discharge capacity retention of 91.2% after 100 cycles. This study also demonstrated that Li-Ga-N had been shown as two layers. Li3N shows more inclined to be closer to the LLZTO side. This method can help researchers understand what interface improvements can occur to enhance the performance of all-solid-state batteries in the future.
RESUMO
All-solid-state batteries with solid ionic conductors packed between solid electrode films can release the dead space between them, enabling a greater number of cells to stack, generating higher voltage to the pack. This Review is focused on using high-voltage cathode materials, in which the redox peak of the components is extended beyond 4.7â V. Li-Ni-Mn-O systems are currently under investigation for use as the cathode in high-voltage cells. Solid electrolytes compatible with the cathode, including halide- and sulfide-based electrolytes, are also reviewed. Discussion extends to the compatibility between electrodes and electrolytes at such extended potentials. Moreover, control over the thickness of the anode is essential to reduce solid-electrolyte interphase formation and growth of dendrites. The Review discusses routes toward optimization of the cell components to minimize electrode-electrolyte impedance and facilitate ion transportation during the battery cycle.
RESUMO
ABSTRACT: Irritable bowel syndrome is a functional gastrointestinal disorder characterized by chronic visceral pain with complex etiology and difficult treatment. Accumulated evidence has confirmed that the sensitization of the central nervous system plays an important role in the development of visceral pain, whereas the exact mechanisms of action of the neural pathways remain largely unknown. In this study, a distinct neural circuit was identified from the paraventricular hypothalamic (PVH) to the ventral of lateral septal (LSV) region. This circuit was responsible for regulating visceral pain. In particular, the data indicated that the PVH CaMKIIα-positive neurons inputs to the LSV CaMKIIα-positive neurons were only activated by colorectal distention rather than somatic stimulations. The PVH-LSV CaMKIIα + projection pathway was further confirmed by experiments containing a viral tracer. Optogenetic inhibition of PVH CaMKIIα + inputs to LSV CaMKIIα-positive neurons suppressed visceral pain, whereas selective activation of the PVH-LSV CaMKIIα + projection evoked visceral pain. These findings suggest the critical role of the PVH-LSV CaMKIIα + circuit in regulating visceral pain.
Assuntos
Núcleos Septais , Dor Visceral , Humanos , Núcleo Hipotalâmico Paraventricular/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologiaRESUMO
Locked nucleic acid quantitative Real-Time PCR (LNA-qPCR) for IDH1/2 mutations in AML measurable residual disease (MRD) detection is rarely reported. LNA-qPCR was applied to quantify IDH1/2 mutants MRD kinetics in bone marrow from 88 IDH1/2-mutated AML patients, and correlated with NPM1-MRD, clinical characteristics, and outcomes. The median normalized copy number (NCN) of IDH1/2 mutants decreased significantly from 53,228 (range 87−980,686)/ALB × 106 at diagnosis to 773 (range 1.5−103,600)/ALB × 106 at first complete remission (CR). IDH1/2 LNA-qPCR MRD was concordant with remission status or NPM1-MRD in 79.5% (70/88) of patients. Younger patients and patients with FLT3 mutations had higher concordance. The Spearman correlation coefficient (rs) and concordance rate between the log reduction of IDH1/2 LNA-qPCR and NPM1-MRD were 0.68 and 81% (K = 0.63, 95% CI 0.50−0.74), respectively. IDH1/2-MRD > 2 log reduction at first CR predicted significantly better relapse-free survival (3-year RFS rates 52.9% vs. 31.9%, p = 0.007) and cumulative incidence of relapse (3-year CIR rates 44.5% vs. 64.5%, p = 0.012) compared to IDH1/2-MRD ≤ 2 log reduction. IDH1/2-MRD > 2 log reduction during consolidation is also associated with a significantly lower CIR rate than IDH1/2-MRD ≤ 2 log reduction (3-year CIR rates 42.3% vs. 68.8%, p = 0.019). LNA-qPCR for IDH1/2 mutation is a potential MRD technique to predict relapse in IDH1/2-mutated AML patients, especially for those with IDH1/2 MRD > 2 log reduction at first CR or a concurrent FLT3 mutation.
RESUMO
Solar-driven water electrolysis to produce hydrogen is one of the clean energy options for the current energy-related challenges. Si as a photocathode exhibits a large overpotential due to the slow hydrogen evolution reaction (HER) kinetics and hence needs to be modified with a cocatalyst layer. MoS2 is a poor HER cocatalyst due to its inert basal plane. Activation of the MoS2 basal plane will facilitate HER kinetics. In this study, we have incorporated SnS2 into MoS2 ultrathin sheets to induce defect formation and phase transformation. MoS2/SnS2 composite ultrathin sheets with a Sn2+ state create a large number of S vacancies on the basal sites. The optimized defect-rich MoS2/SnS2 ultrathin sheets decorated on surface-modified Si micro pyramids as photocathodes show a current density of -23.8 mA/cm2 at 0 V with an onset potential of 0.23 V under acidic conditions, which is higher than that of the pristine MoS2. The incorporation of SnS2 into 2H-MoS2 ultrathin sheets not only induces a phase but also can alter the local atomic arrangement, which in turn is verified by their magnetic response. The diamagnetic SnS2 phase causes a decrease in symmetry and an increase in magnetic anisotropy of the Mo3+ ions.
RESUMO
Metal-CO2 rechargeable batteries are of great importance due to their higher energy density and carbon capture capability. In particular, Na-CO2 batteries are potential energy-storage devices that can replace Li-based batteries due to their lower cost and abundance. However, because of the slow electrochemical processes owing to the carbonated discharge products, the cell shows a high overpotential. The charge overpotential of the Na-CO2 battery increases because of the cathode catalyst's inability to break down the insulating discharge product Na2CO3, thereby resulting in poor cycle performance. Herein, we develop an ultrathin nanosheet MoS2/SnS2 cathode composite catalyst for Na-CO2 battery application. Insertion of SnS2 reduces the overpotential and improves the cyclic stability compared to pristine MoS2. As shown by a cycle test with a restricted capacity of 500 mAh/g at 50 mA/g, the battery is stable up to 100 discharge-charge cycles as the prepared catalyst successfully decomposes Na2CO3. Furthermore, the battery with the MoS2/SnS2 cathode catalyst has a discharge capacity of 35â¯889 mAh/g. The reasons for improvements in the cycle performance and overpotential of the MoS2/SnS2 composite cathode catalyst are examined by a combination of Raman, X-ray photoelectron spectroscopy, and extended X-ray absorption fine structure analysis, which reveals an underneath phase transformation and changes in the local atomic environment to be responsible. SnS2 incorporation induces S-vacancies in the basal plane and 1T character in 2H MoS2. This combined impact of SnS2 incorporation results in undercoordinated Mo atoms. Such a change in the electronic structure and the phase of the MoS2/SnS2 composite cathode catalyst results in higher catalytic activity and reduces the cell overpotential.
RESUMO
All-solid-state Li-ion batteries (ASSLIBs), also known as next-generation batteries, have attracted much attention due to their high energy density and safety. The best advantage of ASSLIBs is the Li-metal anodes that could be used without safety issues. In this study, a highly conductive garnet solid electrolyte (Li6.75La3Zr1.75Ta0.25O12, LLZTO) was used in the ASSLIB, and a Pt film was used to modify the surface of LLZTO to prove the solution of the Li-metal anode for LLZTO. Li-Pt alloy was synthesized to improve the wettability and contact of the interface. The interfacial resistance was reduced by 21 times, at only 9 Ω cm2. The symmetric cell could stably cycle over 3500 h at a current density of 0.1 mA cm-2. The full cell of Li|Li-Pt|LLZTO|LiFePO4 and Li|Li-Pt|LLZTO|LiMn0.8Fe0.2PO4 achieved high stability in terms of battery performance. Point-to-point contact transformed into homogeneous surface contact made the Li-ion flux faster and more stable. This surface modification method could provide researchers with a new choice for fixing interface issues and promoting the application of high-performance ASSLIBs in the future.
RESUMO
An effective Ru/CNT electrocatalyst plays a crucial role in solid-state lithium-carbon dioxide batteries. In the present article, ruthenium metal decorated on a multi-walled carbon nanotubes (CNTs) is introduced as a cathode for the lithium-carbon dioxide batteries with Li1.5Al0.5Ge1.5(PO4)3 solid-state electrolyte. The Ru/CNT cathode exhibits a large surface area, maximum discharge capacity, excellent reversibility, and long cycle life with low overpotential. The electrocatalyst achieves improved electrocatalytic performance for the carbon dioxide reduction reaction and carbon dioxide evolution reaction, which are related to the available active sites. Using the Ru/CNT cathode, the solid-state lithium-carbon dioxide battery exhibits a maximum discharge capacity of 4541 mA h g-1 and 45 cycles of battery life with a small voltage gap of 1.24 V compared to the CNT cathode (maximum discharge capacity of 1828 mA h g-1, 25 cycles, and 1.64 V as voltage gap) at a current supply of 100 mA g-1 with a cutoff capacity of 500 mA h g-1. Solid-state lithium-carbon dioxide batteries have shown promising potential applications for future energy storage.
RESUMO
Two quantitative PCR (qPCR)-based methods, for clonal immunoglobulin or T-cell receptor gene (Ig/TCR) rearrangements and for fusion transcripts, are widely used for the measurement of minimal residual disease (MRD) in patients with B-precursor acute lymphoblastic leukemia (ALL). MRD of bone marrow samples from 165 patients carrying the three major fusion transcripts, including 74 BCR-ABL1, 54 ETV6-RUNX1, and 37 TCF3-PBX1, was analyzed by using the two qPCR-based methods. The correlation coefficient of both methods was good for TCF3-PBX1 (R2 = 0.8088) and BCR-ABL1 (R2 = 0.8094) ALL and moderate for ETV6-RUNX1 (R2 = 0.5972). The concordance was perfect for TCF3-PBX1 ALL (97.2%), substantially concordant for ETV6-RUNX1 ALL (87.1%), and only moderate for BCR-ABL1 ALL (70.6%). The discordant MRD, positive for only one method with a difference greater than one log, was found in 4 of 93 samples (4.3%) with ETV6-RUNX1, 31 of 245 samples (12.7%) with BCR-ABL1, and none of TCF3-PBX1 ALL. None of the eight non-transplanted patients with BCR-ABL1-MRD (+)/Ig/TCR-MRD (-) with a median follow-up time of 73.5 months had hematologic relapses. Our study showed an excellent MRD concordance between the two qPCR-based methods in TCF3-PBX1 ALL, whereas qPCR for Ig/TCR is more reliable in BCR-ABL1 ALL.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Seguimentos , Rearranjo Gênico do Linfócito T/genética , Humanos , Imunoglobulinas/genética , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Recidiva , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Alkali metal-carbon dioxide (Li/Na-CO2) batteries have generated widespread interest in the past few years owing to the attractive strategy of utilizing CO2 while still delivering high specific energy densities. Among these systems, Na-CO2 batteries are more cost effective than Li-CO2 batteries because the former uses cheaper and abundant Na. Herein, a Ru/carbon nanotube (CNT) as a cathode material was used to compare the mechanisms, stabilities, overpotentials, and energy densities of Li-CO2 and Na-CO2 batteries. The potential of Na-CO2 batteries as a viable energy storage technology was demonstrated.
RESUMO
Hydrogen energy is a promising alternative for fossil fuels because of its high energy density and carbon-free emission. Si is an ideal light absorber used in solar water splitting to produce H2 gas because of its small band gap, appropriate conduction band position, and high theoretical photocurrent. However, the overpotential required to drive the photoelectrochemical (PEC) hydrogen evolution reaction (HER) on bare Si electrodes is severely high owing to its sluggish kinetics. Herein, a molybdenum tungsten disulfide (MoS2-WS2) composite decorated on a Si photoabsorber is used as a cocatalyst to accelerate HER kinetics and enhance PEC performance. This MoS2-WS2 hybrid showed superior catalytic activity compared with pristine MoS2 or WS2. The optimal MoS2-WS2/Si electrode delivered a photocurrent of -25.9 mA/cm2 at 0 V (vs reversible hydrogen electrode). X-ray absorption spectroscopy demonstrated that MoS2-WS2 possessed a high hole concentration of unoccupied electronic states in the MoS2 component, which could promote to accept large amounts of carriers from the Si photoabsorber. Moreover, a large number of sulfur vacancies are generated in the MoS2 constituent of this hybrid cocatalyst. These sulfur defects served as HER active sites to boost the catalytic efficiency. Besides, the TiO2-protective MoS2-WS2/Si photocathode maintained a current density of -15.0 mA/cm2 after 16 h of the photocatalytic stability measurement.
RESUMO
Li metal, which has a high theoretical capacity and negative electrochemical potential, is regarded as the "holy grail" in Li-ion batteries. However, the flammable nature of liquid electrolyte leads to safety issues. Hence, the cooperation of solid-state electrolyte and Li-metal anode is demanded. However, the short cycle life induced by interfacial issues is the main challenge faced by their cooperation. In this review, dendrite and interfacial side reactions are comprehensively analyzed as the main interfacial problems. Meanwhile, the "state-of-the-art" interphase materials are summarized. The challenges faced by each kind of material are underscored. Moreover, different processing routes to fabricate artificial interphase are also investigated from an engineering perspective. The processing routes suitable for mass production are also underscored.
RESUMO
Near-infrared (NIR) phosphors are fascinating materials that have numerous applications in diverse fields. In this study, a series of La3Ga5GeO14:Cr3+ phosphors, which was incorporated with Sn4+, Ba2+, and Sc3+, was successfully synthesized using solid-state reaction to explore every cationic site comprehensively. The crystal structures were well resolved by combining synchrotron X-ray diffraction and neutron powder diffraction through joint Rietveld refinements. The trapping of free electrons induced by charge unbalances and lattice vacancies changes the magnetic properties, which was well explained by a Dyson curve in electron paramagnetic resonance. Temperature and pressure-dependent photoluminescence spectra reveal various luminescent properties between strong and weak fields in different dopant centers. The phosphor-converted NIR light-emitting diode (pc-NIR LED) package demonstrates a superior broadband emission that covers the near-infrared (NIR) region of 650-1050 nm. This study can provide researchers with new insight into the control mechanism of multiple-cation-site phosphors and reveal a potential phosphor candidate for practical NIR LED application.