Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 10(2): 806-816, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35116411

RESUMO

BACKGROUND: The aim of the present study was to identify key genes and pathways downstream of S100PPBP in pancreatic cancer cells. METHODS: The microarray datasets GSE35196 (S100PBP knockdown) and GSE35198 (S100PBP overexpression) were downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were obtained separately from GEO2R, and heatmaps showing clustering analysis of DEGs were generated using R software. Gene Ontology and pathway enrichment analyses were performed for identified DEGs using the Database for Annotation, Visualization, and Integrated Discovery and Kyoto Encyclopedia of Genes and Genomes, respectively. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes and Cytoscape software. Relevant expression datasets of key identified genes were downloaded from The Cancer Genome Atlas, and overall survival (OS) analysis was performed with R software. Finally, Gene Expression Profiling Interactive Analysis was used to evaluate the expression of key DEGs in pancreatic cancer tissues. RESULTS: A total of 34 DEGs (11 upregulated and 23 downregulated) were screened out from the two datasets. Gene Ontology enrichment analysis revealed that the identified DEGs were mainly functionally enriched in ATPase activity, production of siRNA involved in RNA interference, and production of miRNAs involved in gene silencing by miRNA. The pathway enrichment analysis of the identified DEGs showed enrichment mainly in apoptosis, non-homologous end-joining, and miRNA pathways in cancer. The protein-protein interaction network was composed of 21 nodes and 30 edges. After survival analysis and gene expression analysis, 4 genes associated with poor prognosis were selected, including LMNB1, PRKRA, SEPT2, and XRCC5. CONCLUSIONS: LMNB1, PRKRA, SEPT2, and XRCC5 could be key downstream genes of the S100PBP gene in the inhibition of pancreatic cancer cell adhesion.

2.
Biogerontology ; 15(4): 389-400, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24973265

RESUMO

Queen honeybees (Apis mellifera) have much longer lifespans than worker bees. Energy-regulated molecules in the trophocytes and fat cells of workers during aging have been determined, but are unknown in queen bees. In the present study, energy-regulated molecules were evaluated in the trophocytes and fat cells of young and old queen bees. Adenosine monophosphate-activated protein kinase α2 (AMPK-α2), phosphorylated AMPK-α2 (pAMPK-α2), and cAMP-specific phosphodiesterases activity increased with aging. The pAMPK-α2/AMPK-α2 ratio and AMPK activity; adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) concentrations; the ADP/ATP ratio and the AMP/ATP ratio; the cyclic adenosine monophosphate concentration; forkhead box protein O expression; Silent information regulator T1 (SirT1) expression and activity; and peroxisome proliferator-activated receptor-α (PPAR-α) expression were not significantly different between young and old queen bees. These results show that energy-regulated molecules maintain a youthful status in the trophocytes and fat cells of queen bees during aging. These cells seem to have longevity-promoting mechanisms and may clarify the secret of longevity in queen bees.


Assuntos
Tecido Adiposo/metabolismo , Abelhas/metabolismo , Adenilato Quinase/metabolismo , Animais , AMP Cíclico/metabolismo , Metabolismo Energético , PPAR alfa/metabolismo , Diester Fosfórico Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA