Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 19(2): 377-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632463

RESUMO

HER2 is a transmembrane receptor with intrinsic tyrosine kinase activity that is overexpressed in almost 25% of human breast cancers. Here, we report that the neddylation of HER2 is a new post-translational modification that controls its expression and oncogenic activity in human breast cancer. Two critical members in the neddylation pathway, NEDD8 and NEDD8-activating enzyme E1 subunit 1 (NAE1), are detected in human breast specimens. Overexpressed NEDD8 and NAE1 are positively correlated with HER2 expression in human breast cancer. Subsequent structure and function experiments show that HER2 directly interacts with NEDD8 and NAE1, whereas HER2 protein expression is decreased by neddylation depletion. Mechanistically, neddylation inhibition promotes the degradation of HER2 protein by improving its ubiquitination. HER2 overexpression abrogates neddylation depletion-triggered cell growth suppression. The inhibition of neddylation synergized with trastuzumab significantly suppresses growth of HER2 positive breast cancer. Collectively, this study demonstrates a previously undiscovered role of NEDD8-dependent HER2 neddylation promotes tumor growth in breast cancer.


Assuntos
Neoplasias da Mama , Proteína NEDD8 , Proteólise , Receptor ErbB-2 , Ubiquitinação , Feminino , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Processamento de Proteína Pós-Traducional , Receptor ErbB-2/metabolismo , Proteína NEDD8/metabolismo , Progressão da Doença
2.
J Biol Chem ; 297(5): 101258, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34599966

RESUMO

The underlying mechanism of neointima formation remains unclear. Ubiquitin-specific peptidase 10 (USP10) is a deubiquitinase that plays a major role in cancer development and progression. However, the function of USP10 in arterial restenosis is unknown. Herein, USP10 expression was detected in mouse arteries and increased after carotid ligation. The inhibition of USP10 exhibited thinner neointima in the model of mouse carotid ligation. In vitro data showed that USP10 deficiency reduced proliferation and migration of rat thoracic aorta smooth muscle cells (A7r5) and human aortic smooth muscle cells (HASMCs). Mechanically, USP10 can bind to Skp2 and stabilize its protein level by removing polyubiquitin on Skp2 in the cytoplasm. The overexpression of Skp2 abrogated cell cycle arrest induced by USP10 inhibition. Overall, the current study demonstrated that USP10 is involved in vascular remodeling by directly promoting VSMC proliferation and migration via stabilization of Skp2 protein expression.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Ubiquitina Tiolesterase/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Humanos , Neointima/genética , Estabilidade Proteica , Proteínas Quinases Associadas a Fase S/genética , Ubiquitina Tiolesterase/genética
3.
Cell Death Dis ; 12(10): 857, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548474

RESUMO

Androgen receptor splice variant 7 (AR-V7), a form of ligand-independent and constitutively activating variant of androgen receptor (AR), is considered as the key driver to initiate castration-resistant prostate cancer (CRPC). Because AR-V7 lacks ligand-binding domain, the AR-targeted therapies that aim to inactivate AR signaling through disrupting the interaction between AR and androgen are limited in CRPC. Thus, the emergence of AR-V7 has become the greatest challenge for treating CRPC. Targeting protein degradation is a recently proposed novel avenue for cancer treatment. Our previous studies have been shown that the oncoprotein AR-V7 is a substrate of the proteasome. Identifying novel drugs that can trigger the degradation of AR-V7 is therefore critical to cure CRPC. Here we show that nobiletin, a polymethoxylated flavonoid derived from the peel of Citrus fruits, exerts a potent anticancer activity via inducing G0/G1 phase arrest and enhancing the sensitivity of cells to enzalutamide in AR-V7 positive PC cells. Mechanically, we unravel that nobiletin selectively induces proteasomal degradation of AR-V7 (but not AR). This effect relies on its selective inhibition of the interactions between AR-V7 and two deubiquitinases USP14 and USP22. These findings not only enrich our understanding on the mechanism of AR-V7 degradation, but also provide an efficient and druggable target for overcoming CRPC through interfering the stability of AR-V7 mediated by the interaction between AR-V7 and deubiquitinase.


Assuntos
Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteólise , Receptores Androgênicos/metabolismo , Animais , Benzamidas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Flavonas/farmacologia , Humanos , Lisina/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
4.
Oncogene ; 40(25): 4291-4306, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079090

RESUMO

Prostate cancer (PC) is the second most common cancer with limited treatment option in males. Although the reactivation of embryonic signals in adult cells is one of the characteristics of cancer, the underlying protein degradation mechanism remains elusive. Here, we show that the molecular chaperone GRP75 is a key player in PC cells by maintaining the protein stability of SIX1, a transcription factor for embryonic development. Mechanistically, GRP75 provides a platform to recruit the deubiquitinating enzyme USP1 to inhibit K48-linked polyubiquitination of SIX1. Structurally, the C-terminus of GRP75 (433-679 aa) contains a peptide binding domain, which is required for the formation of GRP75-USP1-SIX1 protein complex. Functionally, pharmacological or genetic inhibition of the GRP75-USP1-SIX1 protein complex suppresses tumor growth and overcomes the castration resistance of PC cells in vitro and in xenograft mouse models. Clinically, the protein expression of SIX1 in PC tumor tissues is positively correlated with the expression of GRP75 and USP1. These new findings not only enhance our understanding of the protein degradation mechanism, but also may provide a potential way to enhance the anti-cancer activity of androgen suppression therapy.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Proteínas de Homeodomínio/genética , Proteínas Mitocondriais/genética , Neoplasias de Próstata Resistentes à Castração/genética , Proteases Específicas de Ubiquitina/genética , Animais , Castração , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Proteólise , Receptores Androgênicos/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Ubiquitinação/genética
5.
Cell Death Dis ; 12(4): 329, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771975

RESUMO

Breast cancer has the highest incidence and mortality in women worldwide. There are 70% of breast cancers considered as estrogen receptor α (ERα) positive. Therefore, the ERα-targeted therapy has become one of the most effective solution for patients with breast cancer. Whereas a better understanding of ERα regulation is critical to shape evolutional treatments for breast cancer. By exploring the regulatory mechanisms of ERα at levels of post-translational modifications, we identified the deubiquitinase USP15 as a novel protector for preventing ERα degradation and a critical driver for breast cancer progression. Specifically, we demonstrated that USP15 promoted the proliferation of ERα+, but not ERα- breast cancer, in vivo and in vitro. Meanwhile, USP15 knockdown notably enhanced the antitumor activities of tamoxifen on breast cancer cells. Importantly, USP15 knockdown induced the downregulation of ERα protein via promoting its K48-linked ubiquitination, which is required for proliferative inhibition of breast cancer cells. These findings not only provide a novel treatment for overcoming resistance to endocrine therapy, but also represent a therapeutic strategy on ERα degradation by targeting USP15-ERα axis.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Progressão da Doença , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Células MCF-7 , Transdução de Sinais , Transfecção , Ubiquitinação
6.
Am J Cancer Res ; 10(11): 3721-3736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294263

RESUMO

Breast cancer (BCa) has the highest incidence and mortality among malignant diseases in female worldwide. BCa is frequently caused by estrogen receptor α (ERα), a ligand-dependent receptor that highly expressed in about 70% of breast tumors. Therefore, ERα has become a well-characterized and the most effective target for treating ERα-expressing BCa (ERα+ BCa). However, the acquire resistance was somehow developed in patients who received current ERα signaling-targeted endocrine therapies. Hence, discovery of novel anti-estrogen/ERα strategies is urgent. In the present study, we identified butein as a potential agent for breast cancer treatment by the use of a natural product library. We showed that butein inhibits the growth of ERα+ BCa both in vitro and in vivo which is associated with cell cycle arrest that partially triggered by butein-induced ERα downregulation. Mechanically, butein binds to a specific pocket of ERα and promotes proteasome-mediated degradation of the receptor. Collectively, this work reveals that butein is a candidate to diminish ERα signaling which represents a potentially novel strategy for treating BCa.

7.
Aging (Albany NY) ; 12(22): 22892-22905, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33197885

RESUMO

Foam cell formation process is involved in the pathogenesis of atherosclerosis (AS). Activation of this biological process depends on lipid uptake by scavenger receptors, such as CD36, SR-A and SR-B1. Among these receptors, CD36 is the principal one because it dominates roughly 50% lipid uptake in monocytes. In this study, our western blotting and RT-qPCR assays revealed that USP10 inhibition promotes the degradation of CD36 protein but does not change its mRNA level. In addition, Co-IP results showed that USP10 interacts with CD36 and stabilizes CD36 protein by cleaving poly-ubiquitin on CD36. Significantly, USP10 promotes foam cell formation. Immunofluorescence and Oil red O staining assays show that inhibition or knockdown of USP10 suppresses lipid uptake and foam cell formation by macrophages. In conclusion, USP10 promotes the development and progression of atherosclerosis through stabilizing CD36 protein expression. The regulation of USP10-CD36 may provide a significant therapeutic scheme in atherosclerosis.


Assuntos
Antígenos CD36/metabolismo , Células Espumosas/enzimologia , Lipoproteínas LDL/metabolismo , Macrófagos/enzimologia , Ubiquitina Tiolesterase/metabolismo , Linhagem Celular , Humanos , Ubiquitina Tiolesterase/genética
8.
Cell Death Dis ; 11(8): 636, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32801299

RESUMO

Atherosclerosis-associated cardiovascular diseases are main causes leading to high mortality worldwide. Macrophage-derived foam cell formation via uptaking modified lipoproteins is the initial and core step in the process of atherosclerosis. Meanwhile, scavenger receptor is indispensable for the formation of foam cells. UCHL1, a deubiquitinase, has been widely studied in multiple cancers. UCHL1 could be an oncogene or a tumor suppressor in dependent of tumor types. It remains unknown whether UCHL1 influences cellular oxLDL uptake. Herein we show that UCHL1 deletion significantly inhibits lipid accumulation and foam cell formation. Subsequently, we found that UCHL1 inhibitor or siRNA downregulates the expression of CD36 protein whereas SR-A, ABCA1, ABCG1, Lox-1, and SR-B1 have no significant change. Furthermore, the treatment of UCHL1 inhibition increases the abundance of K48-polyubiquitin on CD36 and the suppression of lipid uptake induced by UCHL1 deficiency is attenuated by blocking CD36 activation. Our study concluded that UCHL1 deletion decreases foam cell formation by promoting the degradation of CD36 protein, indicating UCHL1 may be a potential target for atherosclerosis treatment.


Assuntos
Antígenos CD36/metabolismo , Células Espumosas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Aterosclerose/patologia , Transporte Biológico , Linhagem Celular , Colesterol/metabolismo , Enzimas Desubiquitinantes/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Depuradores Classe A/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitinação
9.
Eur J Pharmacol ; 883: 173366, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679184

RESUMO

Bcr-Abl is the primary cause as well as currently key therapeutic target of chronic myeloid leukemia (CML). SKP2, an E3 ligase, is a downstream factor of Bcr-Abl to motivate the cell cycle transition of CML and also found to bind and activate Bcr-Abl in reverse. Therefore, SKP2/Bcr-Abl pathway is an attractive target for CML treatment. This study aims to identify an inhibitor of the SKP2/Bcr-Abl pathway based on a large screening of the natural products. We demonstrate that Diosmetin, a kind of phytoestrogens, notably downregulates the expression of SKP2, Bcr-Abl phosphorylation, and moderately downregulates the Bcr-Abl level. Furthermore, Diosmetin displays a favorable anti-tumor activity in CML cells and xenograft models. Collectively, our study reveals a natural compound in the treatment of CML on the basis of SKP2/Bcr-Abl signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Biol Sci ; 16(12): 2192-2204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549765

RESUMO

The incidence and mortality of breast cancer (BCa) are the highest among female cancers. There are approximate 70% BCa that are classified as estrogen receptor alpha (ERα) positive. Therefore, targeting ERα is the most significantly therapeutic schedule. However, patients with breast cancer develop resistance to ERα or estrogen (E2) antagonists such as fulvestrant and tamoxifen. In the present study, we found that L-Tetrahydropalmatine (L-THP) significantly suppressed cell proliferation in ERα+ BCa cells via inducing cell cycle arrest rather than apoptosis. Additionally, L-THP enhanced the sensitivity of ERα+ BCa cells to tamoxifen and fulvestrant. Mechanically, the application of L-THP promotes ERα degradation through accumulating ubiquitin chains on ERα. Overexpressing ERα abrogates L-THP induced-antiproliferation in ERα+ BCa cells. Collectively, our work indicates that L-THP may represent a potentially novel therapeutic medicine for ERα+ breast cancer patient.


Assuntos
Alcaloides de Berberina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Antineoplásicos Hormonais/farmacologia , Linhagem Celular Tumoral , Antagonistas de Dopamina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antagonistas de Estrogênios/farmacologia , Feminino , Fulvestranto/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Proteica , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA