Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Imeta ; 3(1): e163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868507

RESUMO

Bioactive dietary fiber has been proven to confer numerous health benefits against metabolic diseases based on the modification of gut microbiota. The metabolic protective effects of glucomannan have been previously reported in animal experiments and clinical trials. However, critical microbial signaling metabolites and the host targets associated with the metabolic benefits of glucomannan remain elusive. The results of this study revealed that glucomannan supplementation alleviated high-fat diet (HFD)-induced insulin resistance in mice and that its beneficial effects were dependent on the gut microbiota. Administration of glucomannan to mice promoted the growth of Bacteroides ovatus. Moreover, colonization with B. ovatus in HFD-fed mice resulted in a decrease in insulin resistance, accompanied by improved intestinal barrier integrity and reduced systemic inflammation. Furthermore, B. ovatus-derived indoleacetic acid (IAA) was established as a key bioactive metabolite that fortifies intestinal barrier function via activation of intestinal aryl hydrocarbon receptor (AhR), leading to an amelioration in insulin resistance. Thus, we conclude that glucomannan acts through the B. ovatus-IAA-intestinal AhR axis to relieve insulin resistance.

2.
J Phys Chem B ; 128(19): 4735-4740, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38706129

RESUMO

Arc-shaped BIN/Amphiphysin/Rvs (BAR) domain proteins generate curvature by binding to membranes and induce membrane tubulation at sufficiently large protein coverages. For the amphiphysin N-BAR domain, Le Roux et al., Nat. Commun. 2021, 12, 6550, measured a threshold coverage of 0.44 ± 0.097 for nanotubules emerging from the supported lipid bilayer. In this article, we systematically investigate membrane tubulation induced by arc-shaped protein-like particles with coarse-grained modeling and simulations and determine the threshold coverages at different particle-particle interaction strengths and membrane spontaneous curvatures. In our simulations, the binding of arc-shaped particles induces a membrane shape transition from spherical vesicles to tubules at a particle threshold coverage of about 0.5, which is rather robust to variations of the direct attractive particle interactions or spontaneous membrane curvature in the coarse-grained model. Our study suggests that threshold coverages of around or slightly below 0.5 are a general requirement for membrane tubulation by arc-shaped BAR domain proteins.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo
3.
Acta Cir Bras ; 39: e390224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422326

RESUMO

PURPOSE: To investigate the protective effect of breviscapine on myocardial ischemia-reperfusion injury (MIRI) in diabetes rats. METHODS: Forty rats were divided into control, diabetes, MIRI of diabetes, and treatment groups. The MIRI of diabetes model was established in the latter two groups. Then, the treatment group was treated with 100 mg/kg breviscapine by intraperitoneal injection for 14 consecutive days. RESULTS: After treatment, compared with MIRI of diabetes group, in treatment group the serum fasting blood glucose, fasting insulin, homeostasis model assessment of insulin resistance, and glycosylated hemoglobin levels decreased, the serum total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels decreased, the serum high-density lipoprotein cholesterol level increased, the heart rate decreased, the mean arterial pressure, left ventricular ejection fraction, and fractional shortening increased, the serum cardiac troponin I, and creatine kinase-MB levels decreased, the myocardial tumor necrosis factor α and interleukin-6 levels decreased, the myocardial superoxide dismutase level increased, and the myocardial malondialdehyde level decreased (all P < 0.05). CONCLUSIONS: For treating MIRI of diabetes in rats, the breviscapine can reduce the blood glucose and lipid levels, improve the cardiac function, reduce the myocardial injury, and decrease the inflammatory response and oxidative stress, thus exerting the alleviating effect.


Assuntos
Diabetes Mellitus , Flavonoides , Traumatismo por Reperfusão Miocárdica , Animais , Ratos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Glicemia , Volume Sistólico , Função Ventricular Esquerda , Colesterol
4.
Acta cir. bras ; 39: e390224, 2024. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1533355

RESUMO

Purpose: To investigate the protective effect of breviscapine on myocardial ischemia-reperfusion injury (MIRI) in diabetes rats. Methods: Forty rats were divided into control, diabetes, MIRI of diabetes, and treatment groups. The MIRI of diabetes model was established in the latter two groups. Then, the treatment group was treated with 100 mg/kg breviscapine by intraperitoneal injection for 14 consecutive days. Results: After treatment, compared with MIRI of diabetes group, in treatment group the serum fasting blood glucose, fasting insulin, homeostasis model assessment of insulin resistance, and glycosylated hemoglobin levels decreased, the serum total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels decreased, the serum high-density lipoprotein cholesterol level increased, the heart rate decreased, the mean arterial pressure, left ventricular ejection fraction, and fractional shortening increased, the serum cardiac troponin I, and creatine kinase-MB levels decreased, the myocardial tumor necrosis factor α and interleukin-6 levels decreased, the myocardial superoxide dismutase level increased, and the myocardial malondialdehyde level decreased (all P < 0.05). Conclusions: For treating MIRI of diabetes in rats, the breviscapine can reduce the blood glucose and lipid levels, improve the cardiac function, reduce the myocardial injury, and decrease the inflammatory response and oxidative stress, thus exerting the alleviating effect.


Assuntos
Animais , Ratos , Traumatismo por Reperfusão Miocárdica , Estresse Oxidativo , Diabetes Mellitus , Inflamação , Isquemia
5.
J Am Chem Soc ; 145(31): 17443-17460, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37523689

RESUMO

The recently discovered orthorhombic liquid crystal (LC) phase of symmetry Fddd is proving to be widespread. In this work, a chiral hydroxybutyrate linkage is inserted into the molecular core of hexacatenar rodlike compounds, containing a thienylfluorenone fluorophore. In addition to more usual tools, the methods used include grazing-incidence X-ray scattering, modulated differential scanning calorimetry (DSC), flash DSC with rates up to 6000 K/s, and chiro-optical spectroscopies using Mueller matrix method, plus conformational mapping. Although pure R and S enantiomers form only a strongly chiral hexagonal columnar LC phase (Colh*), the racemic mixture forms a highly ordered Fddd phase with 4 right- and 4 left-handed twisted ribbon-like columns traversing its large unit cell. In that structure, the two enantiomers locally deracemize and self-sort into the columns of their preferred chirality. The twisted ribbons in Fddd, with a 7.54 nm pitch, consist of stacked rafts, each containing ∼2 side-by-side molecules, the successive rafts rotated by 17°. In contrast, an analogous achiral compound forms only the columnar phase. The multiple methods used gave a comprehensive picture and helped in-depth understanding not only of the Fddd phase but also of the "parachiral" Colh* in pure enantiomers with irregular helicity, whose chirality is compared to the magnetization of a paramagnet in a field. Unusual short-range ordering effects are also described. An explanation of these phenomena is proposed based on conformational analysis. Surprisingly, the isotropic-columnar transition is extremely fast, completing within ∼20 ms. A clear effect of phase on UV-vis absorption and emission is observed.

6.
Phys Rev Lett ; 130(11): 118101, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001074

RESUMO

Cation-π interactions underlie many important processes in biology and materials science. However, experimental investigations of cation-π interactions in aqueous media remain challenging. Here, we studied the cation-π binding strength and mechanism by pulling two hydrophobic polymers with distinct cation binding properties, i.e., poly-pentafluorostyrene and polystyrene, in aqueous media using single-molecule force spectroscopy and nuclear magnetic resonance measurement. We found that the interaction strengths linearly depend on the cation concentrations, following the order of Li^{+}

7.
Sci Adv ; 9(8): eadf3495, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827372

RESUMO

The charge transport properties of conjugated polymers are commonly limited by the energetic disorder. Recently, several amorphous conjugated polymers with planar backbone conformations and low energetic disorder have been investigated for applications in field-effect transistors and thermoelectrics. However, there is a lack of strategy to finely tune the interchain π-π contacts of these polymers that severely restricts the energetic disorder of interchain charge transport. Here, we demonstrate that it is feasible to achieve excellent conductivity and thermoelectric performance in polymers based on thiophene-fused benzodifurandione oligo(p-phenylenevinylene) through reducing the crystallization rate of side chains and, in this way, carefully controlling the degree of interchain π-π contacts. N-type (p-type) conductivities of more than 100 S cm-1 (400 S cm-1) and power factors of more than 200 µW m-1 K-2 (100 µW m-1 K-2) were achieved within a single polymer doped by different dopants. It further demonstrated the state-of-the-art power output of the first flexible single-polymer thermoelectric generator.

8.
J Am Chem Soc ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763975

RESUMO

The Leidenfrost effect describes a fascinating phenomenon in which a liquid droplet, when deposited onto a very hot substrate, will levitate on its own vapor layer and undergo frictionless movements. Driven by the significant implications for heat transfer engineering and drag reduction, intensive efforts have been made to understand, manipulate, and utilize the Leidenfrost effect on macrosized objects with a typical size of millimeters. The Leidenfrost effect of nanosized objects, however, remains unexplored. Herein, we report on an unprecedented Leidenfrost effect of single nanosized sulfur particles at room temperature. It was discovered when advanced dark-field optical microscopy was employed to monitor the dynamic sublimation process of single sulfur nanoparticles sitting on a flat substrate. Despite the phenomenological similarity, including the vapor-cushion-induced levitation and the extended lifetime, the Leidenfrost effect at the nanoscale exhibited two extraordinary features that were obviously distinct from its macroscopic counterpart. First, there was a critical size below which single sulfur nanoparticles began to levitate. Second, levitation occurred in the absence of the temperature difference between the nanoparticle and the substrate, which was barely possible for macroscopic objects and underscored the value of bridging the gap connecting the Leidenfrost effect and nanoscience. The sublimation-triggered spontaneous takeoff of single sulfur nanoparticles shed new light on its further applications, such as nanoflight.

9.
J Phys Chem B ; 127(4): 822-827, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36683336

RESUMO

Semicrystalline polymer materials are commonly strong yet tough after processed through fiber spinning, film stretching (or blowing), and plastic molding (or foaming), which are fundamentally related with strain-induced crystallization. This paper provides a personal perspective on thermodynamics and kinetics aspects of strain-induced polymer crystallization, mainly based on the author's recent research experience. The thermodynamic studies include homopolymers, random copolymers, solution polymers, and blend polymers. The kinetic studies cover three sequential crystallization stages, i.e., crystal nucleation, crystal growth, and postgrowth. The thermodynamic driving forces join with the kinetic barriers to determine the crystal nucleation mechanisms and the structure evolution at the molecular level, which yield unique polymer crystal morphologies from lamellar crystals to shish-kebab crystals and eventually fibril crystals. The resulting semicrystalline structures were discussed with their implications for the mechanical properties of products. Some future studies were briefly proposed.

10.
J Phys Chem B ; 126(50): 10768-10775, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36502404

RESUMO

Thermoplastic elastomers such as polyether-b-polyamides (or -polyesters), polyurethanes (or with -urea) and olefin block copolymers are commonly processed through a stretching process for achieving high elasticity and high toughness in their products, while the size diversity of semicrystalline microdomains of hard blocks appears as the key factor. By means of dynamic Monte Carlo simulations of strain-induced crystallization of locally concentrated and diluted crystallizable blocks alternatingly connected with noncrystallizable blocks in diblock and tetrablock copolymers, we have studied the size diversity of semicrystalline microdomains presumably raised by local concentration fluctuations of crystallizable blocks and found the dilution effects to persist from diblock to tetrablock copolymers. In the present work, we continued to study the effects of asymmetric block rigidity between crystallizable and noncrystallizable blocks on strain-induced crystallization of concentrated and diluted crystallizable blocks in diblock copolymers. The results showed that when crystallizable blocks hold higher thermodynamic rigidity than noncrystallizable blocks, the large semicrystalline domains become larger and the small semicrystalline domains become more, enhancing their size diversity. However, asymmetric kinetic rigidity has little effect. Our observations imply that industrial stretching processing could enhance the toughness of semicrystalline thermoplastic elastomers when their crystallizable blocks hold a higher thermodynamic rigidity relative to noncrystallizable blocks. Our integrated approach paved the way for a better understanding of the structure-property relationship in thermoplastic elastomers.


Assuntos
Poliésteres , Polímeros , Cristalização , Método de Monte Carlo , Polímeros/química , Poliésteres/química , Elastômeros/química
11.
Nutrients ; 14(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889903

RESUMO

Evidence linking Faecalibacterium prausnitzii abundance to nonalcoholic fatty liver disease (NAFLD) is accumulating; however, the causal relationship remains obscure. In this study, 12 F. prausnitzii strains were orally administered to high fat diet fed C57BL/6J mice for 12 weeks to evaluate the protective effects of F. prausnitzii on NAFLD. We found that five F. prausnitzii strains, A2-165, LB8, ZF21, PL45, and LC49, significantly restored serum lipid profiles and ameliorated glucose intolerance, adipose tissue dysfunction, hepatic steatosis, inflammation, and oxidative stress in a mouse model of NAFLD. Moreover, two strains, LC49 and LB8, significantly enhanced short-chain fatty acid (SCFA) production and modulated the gut microbiota. Based on the combined analysis of linear discriminant analysis effect size and microbial communities, the core microbiome related to NAFLD comprised Odoribacter, Roseburia, Erysipelatoclostridium, Tyzzerella, Faecalibaculum, Blautia, and Acetatifactor, and the last five genera can be reversed by treatment with the LC49 and LB8 strains. Additionally, the LC49 and LB8 strains enriched Lactobacillus, Ileibacterium, Faecalibacterium, Dubosiella, and Bifidobacterium and downregulated pathways involving carbohydrate metabolism, amino acid metabolism, and fatty acid biosynthesis. Interestingly, LC49 supplementation also upregulated tryptophan metabolism, glutathione metabolism, and valine, leucine, and isoleucine degradation, which might be related to NAFLD prevention. Collectively, F. prausnitzii LC49 and LB8 exerted considerable anti-NAFLD and microbiota-regulating effects, indicating their potential as probiotic agents for NAFLD treatment.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Faecalibacterium , Faecalibacterium prausnitzii , Firmicutes , Microbioma Gastrointestinal/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
12.
Soft Matter ; 18(17): 3376-3383, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416236

RESUMO

Multiblock copolymers containing alternating semicrystalline and molten blocks are good thermoplastic elastomers. Their crystallization in the stretching process is however complicated by the dilution effects, prior microphase separation and contrast chain rigidity of the molten blocks. We designed our systematic investigation with three integrated steps, and herein, as the first step, we considered only the dilution effects without prior microphase separation and contrast chain rigidity. We compared two extreme situations of local dilution separately corresponding to parallel-posited and antiparallel-posited block copolymers upon strain-induced crystallization. Our dynamic Monte Carlo simulations of diblock and tetrablock copolymers demonstrated that the stretching introduces a constraint on the diffusion of locally posited crystallizable blocks along the stretching direction for crystallization and thus enhances the dilution effects to result in a higher diversity in crystal stabilities. We observed that the strain-induced crystallization of parallel-posited copolymers behaved like the melt crystallization of homopolymers; in contrast, the strain-induced crystallization of antiparallel-posited copolymers yielded crystallites near the block junction, which are relatively small and less stable due to their local dilution suppressing their melting points. Similar to the case of spider dragline silks, two contrasting stabilities of crystallites in semicrystalline multiblock copolymers explain their good toughness. Our modeling approach paves the way toward a better understanding of the structure-property relationship in the semicrystalline thermoplastic elastomers.

13.
J Chem Phys ; 156(14): 144904, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428382

RESUMO

Stretching of semicrystalline polymer materials is fundamentally important in their mechanical performance and industrial processing. By means of dynamic Monte Carlo simulations, we compared the parallel stretching processes between the initially bulk amorphous and semicrystalline polymers at various temperatures. In the early stage of stretching, semicrystalline polymers perform local and global melting-recrystallization behaviors at low and high temperatures, while the memory effects occur upon global melting-recrystallization at middle temperatures. However, the final crystallinities, crystalline bond orientations, chain-folding probabilities, residual stresses, and crystallite morphologies at high enough strains appear as the same at each temperature, irrelevant to the initially amorphous and semicrystalline polymers, indicating that the common post-growth melting-reorganization processes determine the final products. In addition, both final products harvest the highest crystallinities in the middle temperature region because the postgrowth stage yields the vast nuclei followed with less extent of crystal growth in the low temperature region and few nuclei followed with large extent of crystal growth in the high temperature region. Our observations imply that a large enough strain can effectively remove the thermal history of polymers, similar to the thermal treatment at a high enough temperature; therefore, the fracture strength of semicrystalline polymers depends upon their final structures in stretching, not related to their nascent semicrystalline structures.

14.
Microorganisms ; 10(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35208752

RESUMO

Faecalibacterium prausnitzii is prevalent in the human gut and is a potential candidate for next-generation probiotics (NGPs) or biotherapeutics. However, the biodiversity and physiological characteristics of Faecalibacterium prausnitzii remain unclear. This study isolated 26 novel F. prausnitzii strains from human feces using a combination of negative screening and prime-specific PCR amplification (NSPA). Based on a 16S rRNA gene analysis, F. prausnitzii strains can be classified into two main phylogroups (phylogroups I and II), which were further clustered into five subgroups (I-A, II-B, II-C, II-D, and II-E). The ultrastructure, colony morphology, growth performance, and short-chain fatty acids (SCFAs)-producing ability were found to be variable among these F. prausnitzii isolates. The optimal pH for the isolates growth ranged between 6.0 and 7.0, while most isolates were inhibited by 0.1% of bile salts. Antimicrobial resistance profiles showed that all F. prausnitzii isolates were susceptible to vancomycin, whereas >80% were kanamycin and gentamicin resistant. Additionally, all strains can utilize maltose, cellulose, and fructose but not xylose, sorbose, and 2'-FL. Overall, our work provides new insights into the biodiversity and physiological characteristics of F. prausnitzii, as well as the choices of strains suitable for NGPs.

15.
J Am Chem Soc ; 144(3): 1267-1273, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35014804

RESUMO

An ultrathin surface layer with extraordinary molecular mobility has been discovered and intensively investigated on thin-film polymer materials for decades. However, because of the lack of suitable characterization techniques, it remains largely unexplored whether such a surface mobile layer also exists on individual polymeric nanospheres. Here, we propose a thermal-optical imaging technique to determine the glass transition (Tg) and rubber-fluid transition (Tf) temperatures of single isolated polystyrene nanospheres (PSNS) in a high-throughput and nonintrusive manner for the first time. Two distinct steps, corresponding to the glass transition and rubber-fluid transition, respectively, were clearly observed in the optical trace of single PSNS during temperature ramping. Because the transition temperature and size of the same individuals were both determined, single nanoparticle measurements revealed the reduced apparent Tf and increased Tg of single PSNS on the gold substrate with a decreasing radius from 130 to 70 nm. Further experiments revealed that the substrate effect played an important role in the increased Tg. More importantly, a gradual decrease in the optical signal was detected prior to the glass transition, which was consistent with a surface layer with enhanced molecular mobility. Quantitative analysis further revealed the thickness of this layer to be ∼8 nm. This work not only uncovered the existence and thickness of a surface mobile layer in single isolated nanospheres but also demonstrated a general bottom-up strategy to investigate the structure-property relationship of polymeric nanomaterials by correlating the thermal property (Tg and Tf) and structural features (size) at single nanoparticle level.

16.
Cancer Cell Int ; 21(1): 390, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289837

RESUMO

BACKGROUND: miR-198 is involved in the formation, migration, invasion, and metastasis of various malignant cancers. However, the function and mechanism of action of miR-198 in the tumorigenesis of renal cell carcinoma (RCC) remain elusive. Here, we aimed to explore the role of miR198 in RCC. METHODS: Immunohistochemistry was performed to estimate the level of survivin in RCC sections. Quantitative real-time polymerase chain reaction was performed to determine the expression level of miR-198 in fresh RCC tissues. Furthermore, the target relationship between miR-198 and BIRC5 was predicted using the TargetScanHuman 7.2 database and verified via dual-luciferase reporter assay and western blotting. The effects of miR-198 on the viability, apoptosis, invasion, and migration of A498 and ACHN cells were studied using Cell Counting Kit-8, flow cytometry, transwell migration assay, and wound healing assay, respectively. Additionally, a xenograft nude mouse model was established to evaluate the effect of miR-198 on RCC tumorigenesis. RESULTS: The expression levels of BIRC5 and miR-198 were respectively higher and lower in RCC tissues than those in normal adjacent tissues. Furthermore, miR-198 could inhibit luciferase activity and reduce the protein level of survivin without affecting the BIRC5 mRNA levels. miR-198 inhibited cell viability, migration, and invasion and promoted cell apoptosis; co-transfection with BIRC5 could rescue these effects. Moreover, miR-198 could repress tumor growth in the xenograft nude mouse model of RCC. CONCLUSIONS: Our study demonstrates that miR-198 suppresses RCC progression by targeting BIRC5.

17.
Polymers (Basel) ; 13(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799374

RESUMO

We report fast-scanning chip-calorimetry measurement of isothermal crystallization kinetics of poly(glycolic acid) (PGA) in a broad temperature range. We observed that PGA crystallization could be suppressed by cooling rates beyond -100 K s-1 and, after fast cooling, by heating rates beyond 50 K s-1. In addition, the parabolic curve of crystallization half-time versus crystallization temperature shows that PGA crystallizes the fastest at 130 °C with the minimum crystallization half-time of 4.28 s. We compared our results to those of poly(L-lactic acid) (PLLA) with nearby molecular weights previously reported by Androsch et al. We found that PGA crystallizes generally more quickly than PLLA. In comparison to PLLA, PGA has a much smaller hydrogen side group than the methyl side group in PLLA; therefore, crystal nucleation is favored by the higher molecular mobility of PGA in the low temperature region as well as by the denser molecular packing of PGA in the high temperature region, and the two factors together decide the higher crystallization rates of PGA in the whole temperature range.

18.
J Sci Food Agric ; 101(13): 5563-5573, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33709404

RESUMO

BACKGROUND: Asthma is increasingly prevalent worldwide, and novel strategies to prevent or treat this disease are needed. Probiotic intervention has recently been reported to be effective for asthma prevention. Here, we explored the effects of Faecalibacterium prausnitzii on the development of allergic airway inflammation in a murine model of house dust mite (HDM)-induced allergic asthma. RESULTS: Supplementation with living and dead F. prausnitzii blocked eosinophil, neutrophil, lymphocyte and macrophage influx and alleviated the pathological changes. Moreover, both living and dead F. prausnitzii administration decreased the levels of interleukin (IL)-4, IL-5, IL-13 and immunoglobulin G1, elevated regulatory T cell (Tregs) ratio, improved microbial dysbiosis and enhanced short-chain fatty acid (SCFA) production. Network correlation analysis revealed that the immune indicators were strongly associated with SCFA production. Based on the linear discriminant analysis effect size, Turicibacter was found to be the core genus related to HDM-induced asthma. Living F. prausnitzii treatment enriched Faecalibaculum, Dubosiella and Streptococcus, while dead F. prausnitzii treatment increased Muribaculaceae and Parabacteroides. Interestingly, both living and dead F. prausnitzii administration enriched Lachnoclostridium and normalized the pathways involving carbohydrate and lipid metabolism, which might be related to SCFA production. CONCLUSION: Faecalibacterium prausnitzii exerts an anti-asthmatic effect partly by gut microbiota modulation and SCFA production, suggesting its potential as a probiotic agent for allergic asthma prevention. © 2021 Society of Chemical Industry.


Assuntos
Asma/tratamento farmacológico , Asma/microbiologia , Bactérias/metabolismo , Faecalibacterium prausnitzii/fisiologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Pyroglyphidae/imunologia , Animais , Asma/genética , Asma/imunologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Eosinófilos/imunologia , Feminino , Humanos , Interleucina-13/genética , Interleucina-13/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Linfócitos T Reguladores/imunologia
19.
Transl Cancer Res ; 10(4): 1874-1884, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35116509

RESUMO

BACKGROUND: Studies have shown that S100A8 and S100A9 are highly expressed in a variety of tumors, including NPC, and are associated with tumor invasion and migration. MMPs are associated with the invasion and migration of tumor cells. To further investigate the mechanism by which S100A8 and S100A9 affect the invasion and migration of NPC cells, the present study examined the effects of S100A8 and S100A9 on MMPs in NPC CNE-2 cells. METHODS: Recombinant pEGFP-N1-S100A8 and recombinant pEGFP-N1-S100A9 overexpression vectors and S100A8 and S100A9 RNA interference (RNAi) vectors were constructed and transfected into NPC CNE-2 cells. The transfection efficiency in each group of cells was assessed, and the gene and protein expression of MMP7, MMP9 and MMP12 were determined. RESULTS: The transfection efficiency was approximately 60-70%. Compared with those in the control group, the expression levels of MMP7, MMP9 and MMP12 in the S100A8 and S100A9 overexpression groups was significantly higher (P<0.05), and the expression levels of MMP7, MMP9 and MMP12 in the S100A8-RNAi and S100A9-RNAi groups were significantly lower (P<0.05). The number of cells in S100A8 overexpression group and S100A9 overexpression group at 24, 48 and 72 h was higher than that in RNAi group, RNAi control group, overexpression control group and normal control group, with statistical significance; The cell doubling time in S100A8 and S100A9 overexpression group was significantly shorter than that in RNAi control group, overexpression control group and normal control group, with statistical significance. CONCLUSIONS: High S100A8 and S100A9 expression may promote the expression of MMP7, MMP9 and MMP12, which are related to the invasion and metastasis of NPC cells.

20.
Oncol Rep ; 43(6): 1964-1974, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236633

RESUMO

Ubiquitin specific peptidase 19 (USP19) is a member of the USP family and exhibits diverse roles in various biological processes, such as cell differentiation, cell cycle progression and apoptosis. There is limited knowledge regarding the role and impact of USP19 in cancer, particularly clear cell renal cell carcinoma (ccRCC). To examine the function of USP19 in ccRCC, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases were examined to determine USP19 mRNA expression levels. USP19 mRNA levels were significantly lower in ccRCC tissues than in normal tissues. USP19 downregulation was associated with ccRCC progression and poor prognostic outcomes in TCGA cohort. Furthermore, the functional involvement of USP19 in ccRCC was examined using Cell Counting Kit­8, soft agar, Transwell and wound healing assays in vitro following overexpression or knockdown of USP19 in the Caki­1 cell line. USP19 overexpression inhibited ccRCC proliferation and migration, whereas USP19 knockdown promoted ccRCC proliferation and migration in vitro. Consistent with these results, it was further demonstrated that USP19 downregulation promoted tumor growth in vivo in a xenograft model. Mechanistically, it was found that USP19 exerted its inhibitory effect on ccRCC proliferation and migration by suppressing the activation of ERK. Collectively, the present findings identified a role for USP19 as a tumor suppressor in ccRCC and demonstrated that USP19 is a potential prognostic biomarker that could be applied in ccRCC therapy.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/patologia , Endopeptidases/genética , Endopeptidases/metabolismo , Neoplasias Renais/patologia , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Camundongos , Transplante de Neoplasias , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA