Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
2.
Front Vet Sci ; 11: 1401909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872795

RESUMO

Aims: The aim of this study was to investigate the effects of aspirin eugenol ester (AEE) on ileal immune function in broilers under lipopolysaccharide (LPS)-induced immune stress. Methods: Two hundred and forty one-day-old male Arbor Acres chicks were randomly divided into four groups (saline, LPS, saline + AEE and LPS + AEE) with six replicates of ten broilers each. The saline group and LPS group were fed the normal diet, while the other two groups received normal diet plus 0.1 g/kg AEE. Broilers in the LPS and LPS + AEE groups were injected intraperitoneally with 0.5 mg/kg B.W LPS in saline for seven consecutive days beginning at 14 days of age, while broilers in the saline and saline + AEE groups were injected with saline only. Results: The results showed that AEE improved the ileal morphology and increased the ratio of villus height to crypt depth of immune-stressed broilers. LPS-induced immune stress significantly reduced the expression of the genes for the tight junction proteins occludin, zonula occludens-1 (ZO-1), claudin-1 and claudin-2, in the ileum, while AEE significantly up-regulated the expression of these genes. Compared with the saline group, the LPS-treated chickens showed significantly increased mRNA expression of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), and microsomal Prostaglandin E Synthesase-1 (mPGES-1) in the ileum, while they were significantly decreased by AEE supplementation. In addition, analysis of the ileal bacterial composition showed that compared with saline and LPS + AEE groups, the proportion of Firmicutes and Lactobacillus in the LPS group was lower, while the proportion of Proteobacteria and Escherichia-Shigella was higher. Similarly, Line Discriminant Analysis Effect Size (LEfSe) analysis showed that compared with the LPS group, Brevibacillus was dominant in the saline group, while the LPS + AEE group was rich in Rhizobium, Lachnoclostridium, Ruminococcaceae, Faecalibacterium, Negativibacillus, Oscillospiraceae, and Flavonifractor. Conclusion: These results indicate that dietary supplementation with 0.1 g/kg AEE could protect the intestinal health by improving the intestinal villus morphology, enhancing the expression of tight junction genes and alleviating inflammation to resist the immune stress caused by LPS stimulation in broilers, and the mechanism may involve COX-2-related signal transduction and improved intestinal microbiota composition.

3.
Nat Microbiol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877225

RESUMO

Initiation of development requires differential gene expression and metabolic adaptations. Here we show in the nematode-trapping fungus, Arthrobotrys flagrans, that both are achieved through a dual-function G-protein-coupled receptor (GPCR). A. flagrans develops adhesive traps and recognizes its prey, Caenorhabditis elegans, through nematode-specific pheromones (ascarosides). Gene-expression analyses revealed that ascarosides activate the fungal GPCR, GprC, at the plasma membrane and together with the G-protein alpha subunit GasA, reprograms the cell. However, GprC and GasA also reside in mitochondria and boost respiration. This dual localization of GprC in A. flagrans resembles the localization of the cannabinoid receptor CB1 in humans. The C. elegans ascaroside-sensing GPCR, SRBC66 and GPCRs of many fungi are also predicted for dual localization, suggesting broad evolutionary conservation. An SRBC64/66-GprC chimaeric protein was functional in A. flagrans, and C. elegans SRBC64/66 and DAF38 share ascaroside-binding sites with the fungal GprC receptor, suggesting 400-million-year convergent evolution.

4.
Poult Sci ; 103(7): 103825, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772090

RESUMO

This study was designed to examine the impact of aspirin eugenol ester (AEE) on the growth performance, serum antioxidant capacity, jejunal barrier function, and cecal microbiota of broilers raised under stressful high density (HD) stocking conditions compared with normal density broilers (ND). A total of 432 one-day-old AA+ male broilers were randomly divided into 4 groups: normal density (ND, 14 broilers /m2), high density (HD, 22 broilers /m2), ND + AEE, and HD + AEE. The results of the study revealed a significant decrease in the growth performance of broiler chickens as a result of HD stress (P < 0.05). The total antioxidant capacity (T-AOC) in serum demonstrated a significant decrease (P < 0.05) at both 28 and 35 d. Conversely, the serum level of malondialdehyde (MDA) exhibited a significant increase (P < 0.05). Dietary supplementation of AEE resulted in a significant elevation (P < 0.05) of serum GSH-PX, SOD and T-AOC activity at both 28 and 35 d. Moreover, exposure to HD stress resulted in a considerable reduction in the height of intestinal villi and mRNA expression of tight junction proteins in the jejunum, along with, a significant elevation in the mRNA expression of inflammatory cytokines (P < 0.05). However, the administration of AEE reversed the adverse effects of HD-induced stress on villus height and suppressed the mRNA expression of the pro-inflammatory genes, COX-2 and mPGES-1. Additionally, the exposure to HD stress resulted in a substantial reduction in the α-diversity of cecal microbiota and disruption in the equilibrium of intestinal microbial composition, with a notable decrease in the relative abundance of Bacteroides and Faecalibacterium (P < 0.05). In contrast, the addition of AEE to the feed resulted in a notable increase in the relative abundance of Phascolarctobacterium and enhanced microbial diversity (P < 0.05). The inclusion of AEE in the diet has been demonstrated to enhance intestinal integrity and growth performance of broilers by effectively mitigating disruptions in gut microbiota induced by HD stress.


Assuntos
Ração Animal , Antioxidantes , Aspirina , Ceco , Galinhas , Dieta , Suplementos Nutricionais , Eugenol , Microbioma Gastrointestinal , Animais , Galinhas/crescimento & desenvolvimento , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Antioxidantes/metabolismo , Dieta/veterinária , Ceco/microbiologia , Ceco/efeitos dos fármacos , Aspirina/administração & dosagem , Aspirina/farmacologia , Aspirina/análogos & derivados , Ração Animal/análise , Suplementos Nutricionais/análise , Eugenol/análogos & derivados , Eugenol/administração & dosagem , Eugenol/farmacologia , Distribuição Aleatória , Criação de Animais Domésticos , Inflamação/veterinária , Inflamação/induzido quimicamente
5.
Materials (Basel) ; 17(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38730884

RESUMO

Regeneration agents play a critical role in modifying the mechanical properties and durability of RAP asphalt mixtures. This paper aimed to develop a castor oil-based asphalt regeneration agent. The effects of this regeneration agent on the pavement performance of laboratory-aged asphalt and an RAP asphalt mixture were comparatively studied by a series of laboratory tests. For the developed castor oil-based asphalt regeneration agent, the weight ratio of the castor oil to dibutyl phthalate was determined as 1:4. Moreover, the regeneration effectiveness of the castor oil-based regeneration agent was tested on three laboratory-aged asphalt binders and an RAP asphalt binder; the penetration, softening point and ductility of the RAP asphalt binder recovered to 83 dmm, 50.3 °C, and more than 100 cm, respectively. The optimum content of the regeneration agent was 5% by the weight of the aged asphalt binder. Furthermore, the castor oil-based regeneration agent could effectively restore the pavement performance of an RAP asphalt mixture. In this study, the RAP percentage can reach up to 60% by the weight of the HMA mixture using the castor oil-based asphalt regeneration agent according to the Chinese specification.

6.
Materials (Basel) ; 17(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38730951

RESUMO

During the compaction process of HMA pavement, it is common to spray cold water on the wheel of a road roller to prevent the mixture from sticking to the wheel, which might deteriorate the bonding strength between the asphalt binder and aggregate, and consequently lead to surface polishing of the pavement. This paper aims to demonstrate whether the water used during the compaction process affects the surface performance of HMA pavement. In this study, the black pixel ratio and mass loss ratio were used to evaluate the water effect on the surface performance of asphalt pavement, considering the water consumption, molding temperature and long-term ageing process. The test results indicated that the water used during the compaction process would increase the risk of surface polishing of HMA pavement. This adverse effect became more significant if the HMA samples were prepared using greater water consumption, a greater molding temperature and a long-term ageing process. Moreover, there exists a certain correlation between the black pixel ratio and mass loss ratio, and their relationships were demonstrated by the experimental results in this study. It is recommended that further research concentrates on the influencing mechanism and the treatment strategy for the adverse effect caused by the water used during the compaction process. The use of more types of asphalt binders, aggregate and methodologies is also recommended in further studies.

7.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746415

RESUMO

Studies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEAD. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in spindle cell rhabdomyosarcoma. We demonstrate that, in contrast to VGLL2 and TEAD1, the fusion proteins are strong activators of TEAD-dependent transcription, and their function does not require YAP/TAZ. Furthermore, we identify that VGLL2 and TEAD1 fusions engage specific epigenetic regulation by recruiting histone acetyltransferase p300 to control TEAD-mediated transcriptional and epigenetic landscapes. We showed that small molecule p300 inhibition can suppress fusion proteins-induced oncogenic transformation both in vitro and in vivo. Overall, our study reveals a molecular basis for VGLL involvement in cancer and provides a framework for targeting tumors carrying VGLL, TEAD, or NCOA translocations.

8.
Arch Virol ; 169(5): 90, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578314

RESUMO

Trees and shrubs provide important ecological services. However, few studies have surveyed the virome in trees and shrubs. In this study, we discovered a new positive-sense RNA virus originating from Viburnum odoratissimum, which we named "Vo narna-like virus". The complete genome of Vo narna-like virus is 3,451 nt in length with an open reading frame (ORF) encoding the RNA-dependent RNA polymerase (RdRP) protein. Phylogenetic analysis placed this virus within the betanarnavirus clade, sharing 53.63% amino acid sequence identity with its closest relative, Qingdao RNA virus 2. The complete sequence of the virus was confirmed by rapid amplification of cDNA ends (RACE) and Sanger sequencing. Small interfering RNA (siRNA) analysis indicated that this virus interacts with the RNA interference (RNAi) pathway of V. odoratissimum. This is the first report of a narnavirus in V. odoratissimum.


Assuntos
Vírus de RNA , Viburnum , Viburnum/genética , RNA Viral/genética , Filogenia , Genoma Viral , Vírus de RNA/genética , Fases de Leitura Aberta
9.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539874

RESUMO

The aim of this study was to investigate the effects of aspirin eugenol ester (AEE) on liver oxidative damage and energy metabolism in immune-stressed broilers. In total, 312 broilers were divided into 4 groups (saline, LPS, SAEE, and LAEE). Broilers in the saline and LPS groups were fed a basal diet; the SAEE and LAEE groups had an added 0.01% AEE in their diet. Broilers in the LPS and LAEE groups were injected with lipopolysaccharides, while the saline and SAEE groups were injected with saline. Results showed that AEE increased the body weight, average daily gain, and average daily feed intake, as well as decreasing the feed conversion ratio of immune-stressed broilers. AEE protects against oxidative damage in immune-stressed broiler livers by elevating the total antioxidant capacity, superoxide dismutase activity, and glutathione S-transferase alpha 3 (GSTA3) and glutaredoxin 2 (GLRX2) expression, while decreasing malondialdehyde content. AEE lessened inflammation by reducing prostaglandin-F2α production and prostaglandin-endoperoxide synthase 2 (PTGS2) and interleukin-1beta (IL-1ß) expression. AEE decreased oxidative phosphorylation rates by increasing succinic acid levels and lowering both adenosine diphosphate (ADP) levels and ceroid lipofuscinosis neuronal 5 (CLN5) expression. AEE modulated the metabolism of phenylalanine, tyrosine, lipids, and cholesterol by reducing the phenyllactate and L-arogenate levels, lowering dopachrome tautomerase (DCT) and apolipoprotein A4 (APOA4) expression, and increasing phenylpyruvic acid and dopa decarboxylase (DDC) expression. In summary, AEE can effectively alleviate liver oxidative damage and energy metabolism disorders in immune-stressed broilers.

10.
Front Microbiol ; 15: 1347053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525083

RESUMO

Aims: The aim of this study was to investigate the effects of chlorogenic acid (CGA) on the intestinal microorganisms and metabolites in broilers during lipopolysaccharide (LPS)-induced immune stress. Methods: A total of 312 one-day-old Arbor Acres (AA) broilers were randomly allocated to four groups with six replicates per group and 13 broilers per replicate: (1) MS group (injected with saline and fed the basal diet); (2) ML group (injected with 0.5 mg LPS/kg and fed the basal diet); (3) MA group (injected with 0.5 mg LPS/kg and fed the basal diet supplemented with 1,000 mg/kg CGA); and (4) MB group (injected with saline and fed the basal diet supplemented with 1,000 mg/kg CGA). Results: The results showed that the abundance of beneficial bacteria such as Bacteroidetes in the MB group was significantly higher than that in MS group, while the abundance of pathogenic bacteria such as Streptococcaceae was significantly decreased in the MB group. The addition of CGA significantly inhibited the increase of the abundance of harmful bacteria such as Streptococcaceae, Proteobacteria and Pseudomonas caused by LPS stress. The population of butyric acid-producing bacteria such as Lachnospiraceae and Coprococcus and beneficial bacteria such as Coriobacteriaceae in the MA group increased significantly. Non-targeted metabonomic analysis showed that LPS stress significantly upregulated the 12-keto-tetrahydroleukotriene B4, riboflavin and mannitol. Indole-3-acetate, xanthurenic acid, L-formylkynurenine, pyrrole-2-carboxylic acid and L-glutamic acid were significantly down-regulated, indicating that LPS activated inflammation and oxidation in broilers, resulting in intestinal barrier damage. The addition of CGA to the diet of LPS-stimulated broilers significantly decreased 12-keto-tetrahydro-leukotriene B4 and leukotriene F4 in arachidonic acid metabolism and riboflavin and mannitol in ABC transporters, and significantly increased N-acetyl-L-glutamate 5-semialdehyde in the biosynthesis of amino acids and arginine, The presence of pyrrole-2-carboxylic acid in D-amino acid metabolism and the cecal metabolites, indolelactic acid, xanthurenic acid and L-kynurenine, indicated that CGA could reduce the inflammatory response induced by immune stress, enhance intestinal barrier function, and boost antioxidant capacity. Conclusion: We conclude that CGA can have a beneficial effect on broilers by positively altering the balance of intestinal microorganisms and their metabolites to inhibit intestinal inflammation and barrier damage caused by immune stress.

11.
Nat Commun ; 15(1): 1683, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395938

RESUMO

Dipterocarpoideae species form the emergent layer of Asian rainforests. They are the indicator species for Asian rainforest distribution, but they are severely threatened. Here, to understand their adaptation and population decline, we assemble high-quality genomes of seven Dipterocarpoideae species including two autotetraploid species. We estimate the divergence time between Dipterocarpoideae and Malvaceae and within Dipterocarpoideae to be 108.2 (97.8‒118.2) and 88.4 (77.7‒102.9) million years ago, and we identify a whole genome duplication event preceding dipterocarp lineage diversification. We find several genes that showed a signature of selection, likely associated with the adaptation to Asian rainforests. By resequencing of two endangered species, we detect an expansion of effective population size after the last glacial period and a recent sharp decline coinciding with the history of local human activities. Our findings contribute to understanding the diversification and adaptation of dipterocarps and highlight anthropogenic disturbances as a major factor in their endangered status.


Assuntos
Dipterocarpaceae , Genômica , Floresta Úmida , Genoma , Filogenia
12.
Nat Commun ; 14(1): 7916, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036537

RESUMO

MyoD is a skeletal muscle-specifically expressed transcription factor and plays a critical role in regulating myogenesis during muscle development and regeneration. However, whether myofibers-expressed MyoD exerts its metabolic function in regulating whole body energy homeostasis in vivo remains largely unknown. Here, we report that genetic deletion of Myod in male mice enhances the oxidative metabolism of muscle and, intriguingly, renders the male mice resistant to high fat diet-induced obesity. By performing lipidomic analysis in muscle-conditioned medium and serum, we identify 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) as a muscle-released lipid that is responsible for MyoD-orchestrated body energy homeostasis in male Myod KO mice. Functionally, the administration of DLPC significantly ameliorates HFD-induced obesity in male mice. Mechanistically, DLPC is found to induce white adipose browning via lipid peroxidation-mediated p38 signaling in male mice. Collectively, our findings not only uncover a novel function of MyoD in controlling systemic energy homeostasis through the muscle-derived lipokine DLPC but also suggest that the DLPC might have clinical potential for treating obesity in humans.


Assuntos
Músculo Esquelético , Obesidade , Humanos , Masculino , Animais , Camundongos , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Homeostase , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Camundongos Endogâmicos C57BL , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo
13.
Cell Rep ; 42(10): 113259, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37851578

RESUMO

CCCTC-binding factor (CTCF), a ubiquitously expressed architectural protein, has emerged as a key regulator of cell identity gene transcription. However, the precise molecular mechanism underlying specialized functions of CTCF remains elusive. Here, we investigate the mechanism through integrative analyses of primary hepatocytes, myocytes, and B cells from mouse and human. We demonstrate that CTCF cooperates with lineage-specific pioneer transcription factors (TFs), including MyoD, FOXA, and PU.1, to control cell identity at 1D and 3D levels. At the 1D level, pioneer TFs facilitate lineage-specific CTCF occupancy via opening chromatin. At the 3D level, CTCF and pioneer TFs form regulatory hubs to govern the expression of cell identity genes. This mechanism is validated using MyoD-null mice, CTCF knockout mice, and CRISPR editing during myogenic differentiation. Collectively, these findings uncover a general mechanism whereby CTCF acts as a cell identity cofactor to control cell identity genes via orchestrating regulatory hubs with pioneer TFs.


Assuntos
Linfócitos B , Fator de Ligação a CCCTC , Fatores de Transcrição , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Cromatina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J Biol Chem ; 299(8): 105045, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451484

RESUMO

Glucagon signaling is essential for maintaining normoglycemia in mammals. The arrestin fold superfamily of proteins controls the trafficking, turnover, and signaling of transmembrane receptors as well as other intracellular signaling functions. Further investigation is needed to understand the in vivo functions of the arrestin domain-containing 4 (ARRDC4) protein family member and whether it is involved in mammalian glucose metabolism. Here, we show that mice with a global deletion of the ARRDC4 protein have impaired glucagon responses and gluconeogenesis at a systemic and molecular level. Mice lacking ARRDC4 exhibited lower glucose levels after fasting and could not suppress gluconeogenesis at the refed state. We also show that ARRDC4 coimmunoprecipitates with the glucagon receptor, and ARRDC4 expression is suppressed by insulin. These results define ARRDC4 as a critical regulator of glucagon signaling and glucose homeostasis and reveal a novel intersection of insulin and glucagon pathways in the liver.


Assuntos
Glucagon , Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Fígado , Animais , Camundongos , Glucagon/metabolismo , Gluconeogênese , Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
15.
Plant Biotechnol J ; 21(10): 2084-2099, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399213

RESUMO

Polyploidization and transposon elements contribute to shape plant genome diversity and secondary metabolic variation in some edible crops. However, the specific contribution of these variations to the chemo-diversity of Lamiaceae, particularly in economic shrubs, is still poorly documented. The rich essential oils (EOs) of Lavandula plants are distinguished by monoterpenoids among the main EO-producing species, L. angustifolia (LA), L. × intermedia (LX) and L. latifolia (LL). Herein, the first allele-aware chromosome-level genome was assembled using a lavandin cultivar 'Super' and its hybrid origin was verified by two complete subgenomes (LX-LA and LX-LL). Genome-wide phylogenetics confirmed that LL, like LA, underwent two lineage-specific WGDs after the γ triplication event, and their speciation occurred after the last WGD. Chloroplast phylogenetic analysis indicated LA was the maternal source of 'Super', which produced premium EO (higher linalyl/lavandulyl acetate and lower 1,8-cineole and camphor) close to LA. Gene expression, especially the monoterpenoid biosynthetic genes, showed bias to LX-LA alleles. Asymmetric transposon insertions in two decoupling 'Super' subgenomes were responsible for speciation and monoterpenoid divergence of the progenitors. Both hybrid and parental evolutionary analysis revealed that LTR (long terminal repeat) retrotransposon associated with AAT gene loss cause no linalyl/lavandulyl acetate production in LL, and multi-BDH copies retained by tandem duplication and DNA transposon resulted in higher camphor accumulation of LL. Advances in allelic variations of monoterpenoids have the potential to revolutionize future lavandin breeding and EO production.


Assuntos
Lavandula , Óleos Voláteis , Cânfora/metabolismo , Lavandula/genética , Lavandula/metabolismo , Filogenia , Melhoramento Vegetal , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo
16.
BMC Biol ; 21(1): 134, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280593

RESUMO

BACKGROUND: Sapria himalayana (Rafflesiaceae) is an endoparasitic plant characterized by a greatly reduced vegetative body and giant flowers; however, the mechanisms underlying its special lifestyle and greatly altered plant form remain unknown. To illustrate the evolution and adaptation of S. himalayasna, we report its de novo assembled genome and key insights into the molecular basis of its floral development, flowering time, fatty acid biosynthesis, and defense responses. RESULTS: The genome of S. himalayana is ~ 1.92 Gb with 13,670 protein-coding genes, indicating remarkable gene loss (~ 54%), especially genes involved in photosynthesis, plant body, nutrients, and defense response. Genes specifying floral organ identity and controlling organ size were identified in S. himalayana and Rafflesia cantleyi, and showed analogous spatiotemporal expression patterns in both plant species. Although the plastid genome had been lost, plastids likely biosynthesize essential fatty acids and amino acids (aromatic amino acids and lysine). A set of credible and functional horizontal gene transfer (HGT) events (involving genes and mRNAs) were identified in the nuclear and mitochondrial genomes of S. himalayana, most of which were under purifying selection. Convergent HGTs in Cuscuta, Orobanchaceae, and S. himalayana were mainly expressed at the parasite-host interface. Together, these results suggest that HGTs act as a bridge between the parasite and host, assisting the parasite in acquiring nutrients from the host. CONCLUSIONS: Our results provide new insights into the flower development process and endoparasitic lifestyle of Rafflesiaceae plants. The amount of gene loss in S. himalayana is consistent with the degree of reduction in its body plan. HGT events are common among endoparasites and play an important role in their lifestyle adaptation.


Assuntos
Genoma Mitocondrial , Transferência Genética Horizontal , Plantas/genética , Flores/genética , Filogenia
17.
J Ethnopharmacol ; 313: 116615, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164255

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shiwei Qingwen decoction (SWQ), a Chinese herbal formula based on the classic traditional Chinese medicine prescription Yu Ping Feng San, has shown efficacy in preventing and treating early pneumonia with good clinical outcomes. However, its underlying mechanism is yet unclear. AIM OF THE STUDY: To clarify the preventive and therapeutic effects of SWQ on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore the underlying mechanism by which SWQ influences pneumonia. MATERIALS AND METHODS: First, the chemical composition of SWQ was preliminarily determined by high performance liquid chromatography (HPLC), and the impact of SWQ (3.27, 6.55, and 13.1 g/kg) was assessed in the LPS-induced ALI rat model. Next, its inflammatory pathway was determined via network pharmacology. Finally, the molecular mechanism of SWQ was validated using a rat ALI model and a THP-1 cell inflammation model. RESULTS: HPLC identified chlorogenic acid, prime-O-glucosylcimifugin, calycosin, and 5-O-methylaminoside in the chemical profile of SWQ. In the ALI model, SWQ alleviated ALI by reducing lung wet/dry weight ratio (W/D) and preventing histopathological damage to the lungs. At the same time, SWQ decreased penetration of inflammatory mediators by upregulating AQP1 and AQP5 and endothelial nitric oxide synthase (eNOS). Pretreatment with SWQ downregulated white blood cells and neutrophils count in BALF and suppressed LPS-induced expression levels of MPO, NE, and pro-inflammatory factors (TNF-α, IL-1ß, IL-6, and iNOS). Network pharmacology showed that SWQ was associated with TLR4/NF-κB inflammation pathway. Moreover, pretreatment with SWQ reduced the expression level of TLR4/NF-κB signaling pathway-associated proteins (TLR4, Myd88, p-IκB, and p-p65) and NLRP3 inflammasome (NLRP3, ASC, caspase-1, and cleaved-IL-1ß) in vivo and vitro. CONCLUSIONS: The present study demonstrates that SWQ can reduce inflammation in ALI by inhibiting TLR4/NF-κB and NLRP3 inflammasome activation.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Ratos , Animais , NF-kappa B/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão/patologia , Inflamação/patologia
18.
Int J Biol Sci ; 19(6): 1713-1730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063427

RESUMO

BAP31 expression was robustly decreased in obese white adipose tissue (WAT). To investigate the roles of BAP31 in lipid metabolism, adipocyte-specific conditional knockout mice (BAP31-ASKO) were generated. BAP31-ASKO mice grow normally as controls, but exhibited reduced lipid accumulation in WAT. Histomorphometric analysis reported increased adipocyte size in BAP31-ASKO mice. Mouse embryonic fibroblasts (MEFs) were induced to differentiation to adipocytes, showed reduced induction of adipogenic markers and attenuated adipogenesis in BAP31-deficient MEFs. BAP31-deficiency inhibited fasting-induced PKA signaling activation and the fasting response. ß3-adrenergic receptor agonist-induced lipolysis also was reduced, accompanied by reduced free-fatty acids and glycerol release, and impaired agonist-induced lipolysis from primary adipocytes and adipose explants. BAP31 interacts with Perilipin1 via C-terminal cytoplasmic portion on lipid droplets (LDs) surface. Depletion of BAP31 repressed Perilipin1 proteasomal degradation, enhanced Perilipin1 expression and blocked LDs degradation, which promoted LDs abnormal growth and supersized LDs formation, resulted in adipocyte expansion, thus impaired insulin signaling and aggravated pro-inflammation in WAT. BAP31-deficiency increased phosphatidylcholine/phosphatidylethanolamine ratio, long chain triglycerides and most phospholipids contents. Overall, BAP31-deficiency inhibited adipogenesis and lipid accumulation in WAT, decreased LDs degradation and promoted LDs abnormal growth, pointing the critical roles in modulating LDs dynamics and homeostasis via proteasomal degradation system in adipocytes.


Assuntos
Adipogenia , Lipólise , Animais , Camundongos , Adipogenia/genética , Fibroblastos/metabolismo , Gotículas Lipídicas/metabolismo , Lipólise/genética , Obesidade/metabolismo , Triglicerídeos/metabolismo , Perilipina-1/metabolismo
19.
Technol Cancer Res Treat ; 22: 15330338231157156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36916303

RESUMO

Objectives: Ovarian cancer is the most lethal gynecologic malignancy, and targeted therapy for different pathological types and molecular phenotypes is urgent to be studied. Studies have shown that MicroRNA-592 (miR-592) plays an important negative regulatory role in the occurrence of gastrointestinal malignancies, breast cancer, non-small cell lung cancer, and glioma, but the expression of miR-592 in ovarian cancer and the mechanism of action are still unclear. Methods: The expressions of miR-592 were examined by RT-PCR and Western Blot. Cell viability and migratory capacity were detected by CCK-8 and transwell assay. TargetScan (http://www.targetscan.org) was analyzed to predict potential targets of miR-592. Then Dual-luciferase reporter gene assay was performed to verify the targeting relationship between miR-592 and ERBB3. A mouse xenograft model was applied to confirm the effect of miR-592. Results: In our study, we found that the expression of miR-592 is reduced in epithelial ovarian cancer tissues. The exogenous expression of miR-592 inhibits the proliferation, migration, and invasion in epithelial ovarian cancer tumor cells. Furthermore, the exogenous expression of miR-592 inhibits tumor growth in the nude mouse xenograft model. Therefore, miR-592 may play a role of tumor suppressor miRNA in the occurrence and development of ovarian cancer. Further experiments demonstrated that tumor-related ERBB3 is a target gene mediated by miRNA-592. The dual-luciferase reporter system was used to identify miRNA-592 target genes; qPCR and Western Blot were used to detect the expression of ERBB3. Mechanical experiments confirmed that miRNA-592 negatively regulated ERBB3.Conclusion: Together, these findings identify a heretofore unrecognized link between miR-592 and ERBB3 and suggest that targeting on miR-592 warrants attention as a novel and potential therapeutic strategy for ovarian cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , Receptor ErbB-3/genética
20.
Materials (Basel) ; 16(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984366

RESUMO

This study introduced phosphogypsum coupled with steel slag powder to prepare the phosphogypsum based filler (PF) for asphalt mixture. Penetration, penetration index, softening point, ductility, equivalent softening point, moisture stability of asphalt mortars with different steel slag powder content, filler-asphalt ratio, and PF content were studied. Mechanical properties of PF based asphalt mortar (P-AM) were then analyzed to determine the optimum steel slag content in PF. Overall desirability method was used to determine the optimum replacement ratio of PF content in limestone filler. Rheological properties of P-AM were also analyzed through dynamic shear rheometer. Volumetric performance, high-temperature performance, low-temperature performance, and moisture stability tests were carried out on PF based AC-20 asphalt mixture. Results showed that P-AM presented the optimum performance when the content of steel slag powder was 23% by mass of phosphogypsum. Fatigue and rutting factor of asphalt mortar were enhanced by PF. The optimum PF content in replacing limestone filler was 75% through overall desirability evaluation. PF developed the high-temperature performance and moisture stability of asphalt mixture. Additionally, volumetric and low-temperature performance were not significantly affected by PF. It is suggested that using PF which is based on phosphogypsum as a filler of asphalt mixture to partially replace traditional limestone filler was adequate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA