Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Stress Health ; : e3472, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243275

RESUMO

The global COVID-19 pandemic saw marked research and clinical interest in evaluating pandemic-related distress, namely fear and anxiety regarding infection and death. The most widely used and earliest developed measure of COVID-19 distress is Ahorsu et al. (2022) seven-item Fear of COVID-19 Scale (FCV-19S). To investigate the factor structure and measurement equivalence of the FCV-19S, we conducted an item-level meta-analysis synthesizing 1155 effect sizes across k = 55 independent samples comprising N = 71,161 individuals. We found that a two-factor measurement model comprising a four-item Emotional factor and a three-item Psychosomatic factor exhibits better fit than the originally proposed single-factor measurement model. Moreover, the bidimensional FCV-19S exhibits partial scalar/strong invariance across the general population, healthcare workers, schoolteachers, and university students as well as partial metric/weak invariance across samples from Bangladesh, China, Japan, Pakistan, Poland, and Portugal. Despite the theoretical and practical implications of these findings, more primary research across a wider range of sample types and countries is undoubtedly needed for further evaluation of the FCV-19S's psychometric properties and generalizability.

2.
Int J Biol Macromol ; 279(Pt 3): 135328, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39242006

RESUMO

Numerous barriers hinder the entry of drugs into cells, limiting the effectiveness of tumor pharmacotherapy. Effective penetration into tumor tissue and facilitated cellular uptake are crucial for the efficacy of nanotherapeutics. Photodynamic therapy (PDT) is a promising approach for tumor suppression. In this study, we developed a size-adjustable porphyrin-based covalent organic framework (COF), further modified with hyaluronic acid (HA), to sequentially deliver drugs for combined chemo-photodynamic tumor therapy. A larger COF (P-COF, approximately 500 nm) was loaded with the antifibrotic drug losartan (LST) to create LST/P-COF@HA (LCH), which accumulates at tumor sites. After injection, LCH releases LST, downregulating tumor extracellular matrix (ECM) component levels and decreasing collagen density, thus reducing tumor solid stress. Additionally, the reactive oxygen species (ROS) generated from LCH under 660 nm laser irradiation induce lipid peroxidation of cell membranes. Owing to its larger particle size, LCH primarily functions extracellularly, paving the way for subsequent treatments. Following intravenous administration, the smaller COF (p-COF, approximately 200 nm) loaded with doxorubicin (DOX) and modified with HA (DOX/p-COF@HA, DCH) readily enters cells in the altered microenvironment. Within tumor cells, ROS generated from DCH facilitates PDT, while the released DOX targets cancer cells via chemotherapy, triggered by disulfide bond cleavage in the presence of elevated glutathione (GSH) levels. This depletion of GSH further enhances the PDT effect. Leveraging the size-tunable properties of the porphyrin COF, this platform achieves a multifunctional delivery system that overcomes specific barriers at optimal times, leading to improved outcomes in chemo-photodynamic multimodal tumor therapy in vivo.

3.
J Control Release ; 375: 116-126, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39236899

RESUMO

Many chemotherapeutic and molecular targeted drugs have been used to treat brain metastases, e.g., anti-angiogenic vandetanib. However, the blood-brain barrier and brain-specific resistance mechanisms make these systemic therapeutic approaches inefficacious. Brain metastatic cancer cells could mimic neurons to upregulate multiple serpins and secrete them into the extracellular environment to reduce local plasmin production to promote L1CAM-mediated vessel co-option and resist anti-angiogenesis therapy. Here, we developed brain-tumor-seeking and serpin-inhibiting outer membrane vesicles (DE@OMVs) to traverse across the blood-brain barrier, bypass neurons, and specially enter metastatic cancer cells via targeting GRP94 and vimentin. Through specific delivery of dexamethasone and embelin, reduced serpin secretion, restored plasmin production, significant L1CAM inactivation and tumor cell apoptosis were specially found in intracranial metastatic regions, leading to delayed tumor growth and prolonged survival in mice with brain metastases. By combining the brain-tumor-seeking properties with the regulation of the serpin/plasminogen activator/plasmin/L1CAM axis, this study provides a potent and highly-selective systemic therapeutic option for brain metastases.

4.
J Mol Neurosci ; 74(3): 87, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264510

RESUMO

Endoplasmic reticulum stress (ERS) plays an essential role in the development of traumatic brain injury (TBI). We aimed to identify and validate the potential ERS-related genes of TBI through bioinformatics analysis and in vitro cell experiment. A total of 19 TBI and ERS-related genes were obtained from the GeneCards database and Comparative Toxicogenomics Database (CTD). Enrichment analysis primarily enriched in apoptosis. NFE2L2 was identified as a hub gene based on the protein-protein interactions (PPI) network that combined seven ranked methods included in cytoHubba. To further explore the effect of Nrf2, the protein encoded by NFE2L2, on ERS-induced apoptosis, we conducted cell experiments with tert-butylhydroquinone (tBHQ), the classical inducer of Nrf2. Western blot suggested tBHQ pretreatment could diminish ERS and reduce the protein expressions of apoptosis in the primary cultured neuron injury model. These data may establish some theoretical basis for the treatment of TBI and provide inspiration and innovative ideas for clinicians and pathologists to understand TBI comprehensively.


Assuntos
Apoptose , Lesões Encefálicas Traumáticas , Estresse do Retículo Endoplasmático , Hidroquinonas , Fator 2 Relacionado a NF-E2 , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Animais , Hidroquinonas/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Células Cultivadas , Neurônios/metabolismo , Ratos Sprague-Dawley , Mapas de Interação de Proteínas
5.
Antioxidants (Basel) ; 13(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39199191

RESUMO

As a significant global issue, aging is prompting people's interest in the potential anti-aging properties of Anoectochilus roxburghii (A. roxburghii), a plant traditionally utilized in various Asian countries for its purported benefits in treating diabetes and combating aging. However, the specific anti-aging components and mechanisms of A. roxburghii remain unclear. This study aims to investigate the anti-aging effects and mechanisms of A. roxburghii extract E (ARE). Caenorhabditis elegans (C. elegans) were exposed to media containing different concentrations of ARE whose superior in vitro radical scavenging capacity was thus identified. Lifespan assays, stress resistance tests, and RT-qPCR analyses were conducted to evaluate anti-aging efficacy, reactive oxygen species (ROS) levels, antioxidant enzyme activity, and daf-16, sod-3, and gst-4 levels. Additionally, transcriptomic and metabolomic analyses were performed to elucidate the potential anti-aging mechanisms of ARE. Fluorescence protein assays and gene knockout experiments were employed to validate the impacts of ARE on anti-aging mechanisms. Our results revealed that ARE not only prolonged the lifespan of C. elegans but also mitigated ROS and lipofuscin accumulation, and boosted resistance to UV and heat stress. Furthermore, ARE modulated the expression of pivotal anti-aging genes including daf-16, sod-3, and gst-4, facilitating the nuclear translocation of DAF-16. Significantly, ARE failed to extend the lifespan of daf-16-deficient C. elegans (CF1038), indicating its dependency on the daf-16/FoxO signaling pathway. These results underscored the effectiveness of ARE as a natural agent for enhancing longevity and stress resilience to C. elegans, potentially to human.

6.
Colloids Surf B Biointerfaces ; 242: 114109, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39047644

RESUMO

Photoimmunotherapy represents an innovative approach to enhancing the efficiency of immunotherapy in cancer treatment. This approach involves the fusion of immunotherapy and phototherapy (encompassing techniques like photodynamic therapy (PDT) and photothermal therapy (PTT)). Boron-dipyrromethene (BODIPY) has the potential to trigger immunotherapy owing to its excellent PD and PT efficiency. However, the improvements in water solubility, bioavailability, PD/PT combined efficiency, and tumor tissue targeting of BODIPY require introduction of suitable carriers for potential practical application. Herein, a disulfide bond-based hollow mesoporous organosilica (HMON) with excellent biocompatibility and GSH-responsive degradation properties was used as a carrier to load a bithiophene Aza-BODIPY dye (B5), constructing a sample chemotherapy reagent-free B5@HMON nanoplatform achieving triple-synergistic photoimmunotherapy. HMON, involving disulfide bond, is utilized to improve water solubility, tumor tissue targeting, and PD efficiency by depleting GSH and enhancing host-guest interaction between B5 and HMO. The study reveals that HMON's large specific surface area and porous properties significantly enhance the light collection and oxygen adsorption capacity. The HMON's rich mesoporous structure and internal cavity achieved a loading rate of B5 at 11 %. It was found that the triple-synergistic nanoplatform triggered a stronger anti-tumor immune response, including tumor invasion, cytokine production, calreticulin translocation, and dendritic cell maturation, eliciting specific tumor-specific immunological responses in vivo and in vitro. The BALB/c mouse model with 4T1 tumors was used to assess tumor suppression efficiency in vivo, showing that almost all tumors in the B5@HMON group disappeared after 14 days. Such a simple chemotherapy reagent-free B5@HMON nanoplatform achieved triple-synergistic photoimmunotherapy.


Assuntos
Compostos de Boro , Glutationa , Imunoterapia , Animais , Compostos de Boro/química , Compostos de Boro/farmacologia , Camundongos , Imunoterapia/métodos , Glutationa/química , Glutationa/metabolismo , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Camundongos Endogâmicos BALB C , Humanos , Tamanho da Partícula , Tiofenos/química , Tiofenos/farmacologia , Propriedades de Superfície , Fotoquimioterapia , Nanopartículas/química , Fototerapia/métodos , Linhagem Celular Tumoral , Feminino , Proliferação de Células/efeitos dos fármacos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Porosidade
7.
Bioact Mater ; 36: 490-507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39055351

RESUMO

Immunogenic cell death (ICD) represents a modality of apoptosis distinguished by the emanation of an array of damage-related molecular signals. This mechanism introduces a novel concept in the field of contemporary tumor immunotherapy. The inception of reactive oxygen species (ROS) within tumor cells stands as the essential prerequisite and foundation for ICD induction. The formulation of highly efficacious photodynamic therapy (PDT) nanomedicines for the successful induction of ICD is an area of significant scientific inquiry. In this work, we devised a ROS-responsive and triple-synergistic mitochondria-targeted polymer micelle (CAT/CPT-TPP/PEG-Ce6, CTC) that operates with multistage amplification of ROS to achieve the potent induction of ICD. Utilizing an "all-in-one" strategy, we direct both the PDT and chemotherapeutic units to the mitochondria. Concurrently, a multistage cyclical amplification that caused by triple synergy strategy stimulates continuous, stable, and adequate ROS generation (domino effect) within the mitochondria of cells. Conclusively, influenced by ROS, tumor cell-induced ICD is effectively activated, remodeling immunogenicity, and enhancing the therapeutic impact of PDT when synergized with chemotherapy. Empirical evidence from in vitro study substantiates that CTC micelles can efficiently provoke ICD, catalyzing CRT translocation, the liberation of HMGB1 and ATP. Furthermore, animal trials corroborate that polymer micelles, following tail vein injection, can induce ICD, accumulate effectively within tumor tissues, and markedly inhibit tumor growth subsequent to laser irradiation. Finally, transcriptome analysis was carried out to evaluate the changes in tumor genome induced by CTC micelles. This work demonstrates a novel strategy to improve combination immunotherapy using nanotechnology.

8.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(3): 368-375, 2024 Jun 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38899349

RESUMO

OBJECTIVES: To compare the pregnancy and neonatal outcomes of in vitro fertilization-embryo transfer (IVF-ET) with fresh or frozen embryos in spouses of patients with severely low sperm concentration and motility. METHODS: A total of 2300 patients whose spouses have severely low sperm concentration and motility underwent IVT-ET in the Reproduction Medicine Center, Sir Run Run Shaw Hospital from April 2018 to April 2022. After applying the propensity score matching (PSM), 473 fresh embryo transferred cycles and 473 frozen embryo transferred cycles were selected for the study, and the pregnancy and neonatal outcomes were compared between the two groups. RESULTS: There were no significant differences in pregnancy outcomes and neonatal outcomes between fresh and frozen embryo groups (all P>0.05). In the stratification analysis, the number of retrieved oocytes in the fresh good-quality embryo transfer group was significantly increased compared with the fresh poor-quality embryo group (P<0.05), but the very early pregnancy loss rates were similar between the two groups (P>0.05), while the rate in fresh good-quality embryo transfer group was significantly higher than that in the frozen good-quality embryo transfer group (P<0.05). Among different age groups of women, the number of retrieved oocytes and the level of estrogen in the fresh embryo transfer group was significantly higher in the 20 to <30 years old group than that in the 30 to <35 years old group (both P<0.05), but the clinical pregnancy rate was lower in the 20 to <30 years old group than that in the 30 to <35 years old group (P>0.05). Additionally, the very early pregnancy loss was significantly increased in the fresh embryo group compared with the frozen embryo group in the 20 to <30 years age group (P<0.05). CONCLUSIONS: There were no significant differences in pregnancy and neonatal outcomes between fresh and frozen embryo transfer in spouses of patients with severely low sperm concentration and motility undergoing IVF-ET. Due to the shorter transfer times, less embryo freezing damage and reduced costs, fresh embryo transfer can be considered as the first choice. However, it is not necessary to pursue fresh embryo transfer if maternal oestrogen levels are too high and there is a tendency of overstimulation.


Assuntos
Criopreservação , Transferência Embrionária , Fertilização in vitro , Resultado da Gravidez , Taxa de Gravidez , Motilidade dos Espermatozoides , Humanos , Transferência Embrionária/métodos , Gravidez , Feminino , Fertilização in vitro/métodos , Adulto , Masculino , Contagem de Espermatozoides , Cônjuges , Recuperação de Oócitos
9.
J Nutr Biochem ; 131: 109687, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38866191

RESUMO

Glucose metabolic disorders, prevalent in numerous metabolic diseases, have become a pressing global public health concern. Artemisinin (ART) and its derivatives, including artesunate (ARTs) and artemether (ARTe), have shown potential as metabolic regulators. However, the specific effects of ART and its derivatives on glucose metabolism under varying nutritional conditions and the associated molecular mechanisms remain largely unexplored. In this study, we examined the impact of ART, ARTs, and ARTe on glucose homeostasis using a mouse model subjected to different dietary regimens. Our findings revealed that ART, ARTs, and ARTe increased blood glucose levels in mice on a normal-chow diet (ND) while mitigating glucose imbalances in high-fat diet (HFD) mice. Notably, treatment with ART, ARTs, and ARTe had contrasting effects on in vivo insulin signaling, impairing it in ND mice and enhancing it in HFD mice. Moreover, the composition of gut microbiota underwent significant alterations following administration of ART and its derivatives. In ND mice, these treatments reduced the populations of bacteria beneficial for improving glucose homeostasis, including Parasutterella, Alloprevotella, Bifidobacterium, Ileibacterium, and Alistipes. In HFD mice, there was an increase in the abundance of beneficial bacteria (Alistipes, Akkermanisia) and a decrease in bacteria known to negatively impact glucose metabolism (Coprobacillus, Helicobacter, Mucispirillum, Enterorhabdus). Altogether, ART, ARTs, and ARTe exhibited distinct effects on the regulation of glucose metabolism, depending on the nutritional context, and these effects were closely associated with modifications in gut microbiota composition.


Assuntos
Artemisininas , Dieta Hiperlipídica , Microbioma Gastrointestinal , Homeostase , Camundongos Endogâmicos C57BL , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Artemisininas/farmacologia , Masculino , Dieta Hiperlipídica/efeitos adversos , Camundongos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Glucose/metabolismo , Artesunato/farmacologia , Artemeter/farmacologia
11.
Taiwan J Obstet Gynecol ; 63(3): 336-340, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38802196

RESUMO

OBJECTIVE: To explore the optimal timing of embryo transfer after the first round treatment of chronic endometritis (CE) in vitro. MATERIALS AND METHODS: A total of 184 patients were recruited from a retrospective analysis of a large university-affiliated reproduction center in 2021. Some people chose to undergo embryo transfer in the same menstrual cycle with the first round of antibiotic treatment (Group 1, n = 29). Others received embryo transfer in the next cycle after the first round of treatment (Group 2, n = 69) or even one cycle later (Group 3,n = 96). RESULTS: Patients in Group 1 got significantly lower biochemical pregnancy rate and clinical pregnancy rate and live birth rate than Group 2 (p < 0.05) and also Group 3 (p < 0.05). Then after comparing the influence factors, we found embryo transfer in the next cycle after antibiotic treatment had a higher clinical pregnancy rate than group 1 (OR = 3.2 p < 0.05) and group 3(OR = 2.5, p < 0.05). The live birth rate in group 2 was higher than group 1(OR = 3.5, p < 0.05). CONCLUSION: These findings illustrate that embryo transfer in the next menstrual cycle is the optimal time. Embryo transfer in the same menstrual cycle with the first round of treatment reduces the pregnancy rate.


Assuntos
Antibacterianos , Transferência Embrionária , Endometrite , Taxa de Gravidez , Humanos , Feminino , Transferência Embrionária/métodos , Gravidez , Estudos Retrospectivos , Adulto , Endometrite/tratamento farmacológico , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Doença Crônica , Fatores de Tempo , Fertilização in vitro/métodos , Nascido Vivo , Ciclo Menstrual/efeitos dos fármacos
12.
BMC Infect Dis ; 24(1): 535, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807038

RESUMO

BACKGROUND: To assess the immunogenicity of the current primary polio vaccination schedule in China and compare it with alternative schedules using Sabin or Salk-strain IPV (sIPV, wIPV). METHODS: A cross-sectional investigation was conducted at four sites in Chongqing, China, healthy infants aged 60-89 days were conveniently recruited and divided into four groups according to their received primary polio vaccination schedules (2sIPV + bOPV, 2wIPV + bOPV, 3sIPV, and 3wIPV). The sero-protection and neutralizing antibody titers against poliovirus serotypes (type 1, 2, and 3) were compared after the last dose. RESULTS: There were 408 infants completed the protocol. The observed seropositivity was more than 96% against poliovirus types 1, 2, and 3 in all groups. IPV-only groups induced higher antibody titers(GMT) against poliovirus type 2 (Median:192, QR: 96-384, P<0.05) than the "2IPV + bOPV" group. While the "2IPV + bOPV" group induced significantly higher antibody titers against poliovirus type 1 (Median:2048, QR: 768-2048, P<0.05)and type 3 (Median:2048, QR: 512-2048, P<0.05) than the IPV-only group. CONCLUSIONS: Our findings have proved that the two doses of IPV with one dose of bOPV is currently the best polio routine immunization schedule in China.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Esquemas de Imunização , Poliomielite , Vacina Antipólio de Vírus Inativado , Vacina Antipólio Oral , Poliovirus , Humanos , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio de Vírus Inativado/administração & dosagem , Poliomielite/prevenção & controle , Poliomielite/imunologia , Lactente , Vacina Antipólio Oral/imunologia , Vacina Antipólio Oral/administração & dosagem , Masculino , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Estudos Transversais , China , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Poliovirus/imunologia , Imunogenicidade da Vacina , Vacinação
13.
ACS Appl Mater Interfaces ; 16(15): 18252-18267, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581365

RESUMO

Nitric oxide (NO) intervenes, that is, a potential treatment strategy, and has attracted wide attention in the field of tumor therapy. However, the therapeutic effect of NO is still poor, due to its short half-life and instability. Therapeutic concentration ranges of NO should be delivered to the target tissue sites, cell, and even subcellular organelles and to control NO generation. Mitochondria have been considered a major target in cancer therapy for their essential roles in cancer cell metabolism and apoptosis. In this study, mesoporous silicon-coated gold nanorods encapsulated with a mitochondria targeted and the thermosensitive lipid layer (AuNR@MSN-lipid-DOX) served as the carrier to load NO prodrug (BNN6) to build the near-infrared-triggered synergetic photothermal NO-chemotherapy platform (AuNR@MSN(BNN6)-lipid-DOX). The core of AuNR@MSN exhibited excellent photothermal conversion capability and high loading efficiency in terms of BNN6, reaching a high value of 220 mg/g (w/w), which achieved near-infrared-triggered precise release of NO. The outer biocompatible lipid layer, comprising thermosensitive phospholipid DPPC and mitochondrial-targeted DSPE-PEG2000-DOX, guided the whole nanoparticle to the mitochondria of 4T1 cells observed through confocal microscopy. In the mitochondria, the nanoparticles increased the local temperature over 42 °C under NIR irradiation, and a high NO concentration from BNN6 detected by the NO probe and DSPE-PEG2000-DOX significantly inhibited 4T1 cancer cells in vitro and in vivo under the synergetic photothermal therapy (PTT)-NO therapy-chemotherapy modes. The built NIR-triggered combination therapy nanoplatform can serve as a strategy for multimodal collaboration.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Fosfatidiletanolaminas , Polietilenoglicóis , Doxorrubicina/farmacologia , Óxido Nítrico , Fototerapia , Nanopartículas/uso terapêutico , Mitocôndrias , Lipídeos , Linhagem Celular Tumoral
14.
Br J Cancer ; 130(11): 1841-1854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553589

RESUMO

BACKGROUND: Despite the extensive study of MYCN-amplified neuroblastomas, there is a significant unmet clinical need in MYCN non-amplified cases. In particular, the extent of heterogeneity within the MYCN non-amplified population is unknown. METHODS: A total of 1566 samples from 16 datasets were identified in Gene Expression Omnibus (GEO) and ArrayExpress. Characterisation of the subtypes was analysed by ConsensusClusterPlus. Independent predictors for subgrouping were constructed from the single sample predictor based on the multiclassPairs package. Findings were verified using immunohistochemistry and CIBERSORTx analysis. RESULTS: We demonstrate that MYCN non-amplified neuroblastomas are heterogeneous and can be classified into 3 subgroups based on their transcriptional signatures. Within these groups, subgroup_2 has the worst prognosis and this group shows a 'MYCN' signature that is potentially induced by the overexpression of Aurora Kinase A (AURKA); whilst subgroup_3 is characterised by an 'inflamed' gene signature. The clinical implications of this subtype classification are significant, as each subtype demonstrates a unique prognosis and vulnerability to investigational therapies. A total of 420 genes were identified as independent subgroup predictors with average balanced accuracy of 0.93 and 0.84 for train and test datasets, respectively. CONCLUSION: We propose that transcriptional subtyping may enhance precision prognosis and therapy stratification for patients with MYCN non-amplified neuroblastomas.


Assuntos
Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/classificação , Neuroblastoma/patologia , Neuroblastoma/mortalidade , Proteína Proto-Oncogênica N-Myc/genética , Prognóstico , Aurora Quinase A/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Amplificação de Genes
15.
EMBO Mol Med ; 16(4): 988-1003, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355748

RESUMO

Endometrial cancer (EC) stands as the most prevalent gynecological tumor in women worldwide. Notably, differentiation diagnosis of abnormity detected by ultrasound findings (e.g., thickened endometrium or mass in the uterine cavity) is essential and remains challenging in clinical practice. Herein, we identified a metabolic biomarker panel for differentiation diagnosis of EC using machine learning of high-performance serum metabolic fingerprints (SMFs) and validated the biological function. We first recorded the high-performance SMFs of 191 EC and 204 Non-EC subjects via particle-enhanced laser desorption/ionization mass spectrometry (PELDI-MS). Then, we achieved an area-under-the-curve (AUC) of 0.957-0.968 for EC diagnosis through machine learning of high-performance SMFs, outperforming the clinical biomarker of cancer antigen 125 (CA-125, AUC of 0.610-0.684, p < 0.05). Finally, we identified a metabolic biomarker panel of glutamine, glucose, and cholesterol linoleate with an AUC of 0.901-0.902 and validated the biological function in vitro. Therefore, our work would facilitate the development of novel diagnostic biomarkers for EC in clinics.


Assuntos
Biomarcadores Tumorais , Neoplasias do Endométrio , Feminino , Humanos , Biomarcadores Tumorais/análise , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Endométrio/química , Endométrio/metabolismo , Endométrio/patologia , Biomarcadores/metabolismo , Útero , Espectrometria de Massas/métodos
16.
Cancer Lett ; 585: 216656, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38266804

RESUMO

Hormone receptor-positive breast cancer (HR+ BC) is known to be relatively insensitive to chemotherapy, and since chemotherapy has remained the major neoadjuvant therapy for HR+ BC, the undetermined mechanism of chemoresistance and how chemotherapy reshapes the immune microenvironment need to be explored by high-throughput technology. By using single-cell RNA sequencing and multiplexed immunofluorescence staining analysis of HR+ BC samples (paired pre- and post-neoadjuvant chemotherapy (NAC)), the levels of previously unrecognized immune cell subsets, including CD8+ T cells with pronounced expression of T-cell development (LMNA) and cytotoxicity (FGFBP2) markers, CD4+ T cells characterized by proliferation marker (ATP1B3) expression and macrophages characterized by CD52 expression, were found to be increased post-NAC, which were predictive of chemosensitivity and their antitumor function was also validated with in vitro experiments. In terms of immune checkpoint expression of CD8+ T cells, we found their changes were inconsistent post-NAC, that LAG3, VSIR were decreased, and PDCD1, HAVCR2, CTLA4, KLRC1 and BTLA were increased. In addition, we have identified novel genomic and transcriptional patterns of chemoresistant cancer cells, both innate and acquired, and have confirmed their prognostic value with TCGA cohorts. By shedding light on the ecosystem of HR+ BC reshaped by chemotherapy, our results uncover valuable candidates for predicting chemosensitivity and overcoming chemoresistance in HR+ BC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Terapia Neoadjuvante/métodos , Linfócitos T CD8-Positivos/metabolismo , Ecossistema , Análise de Sequência de RNA , Microambiente Tumoral , ATPase Trocadora de Sódio-Potássio/uso terapêutico
17.
J Pathol ; 262(3): 320-333, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38108121

RESUMO

Bone morphogenetic protein (BMP)-Smad1/5/8 signaling plays a crucial regulatory role in lung development and adult lung homeostasis. However, it remains elusive whether BMP-Smad1/5/8 signaling is involved in the pathogenesis of emphysema. In this study, we downregulated BMP-Smad1/5/8 signaling by overexpressing its antagonist Noggin in adult mouse alveolar type II epithelial cells (AT2s), resulting in an emphysematous phenotype mimicking the typical pathological features of human emphysema, including distal airspace enlargement, pulmonary inflammation, extracellular matrix remodeling, and impaired lung function. Dysregulation of BMP-Smad1/5/8 signaling in AT2s leads to inflammatory destruction dominated by macrophage infiltration, associated with reduced secretion of surfactant proteins and inhibition of AT2 proliferation and differentiation. Reactivation of BMP-Smad1/5/8 signaling by genetics or chemotherapy significantly attenuated the morphology and pathophysiology of emphysema and improved the lung function in Noggin-overexpressing lungs. We also found that BMP-Smad1/5/8 signaling was downregulated in cigarette smoke-induced emphysema, and that enhancing its activity in AT2s prevented or even reversed emphysema in the mouse model. Our data suggest that BMP-Smad1/5/8 signaling, located at the top of the signaling cascade that regulates lung homeostasis, represents a key molecular regulator of alveolar stem cell secretory and regenerative function, and could serve as a potential target for future prevention and treatment of pulmonary emphysema. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Enfisema , Enfisema Pulmonar , Transdução de Sinais , Animais , Humanos , Camundongos , Células Epiteliais Alveolares/metabolismo , Enfisema/metabolismo , Pulmão/metabolismo , Enfisema Pulmonar/genética , Transdução de Sinais/fisiologia , Proteína Smad1/genética , Proteína Smad1/metabolismo
18.
Mol Immunol ; 163: 196-206, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37837955

RESUMO

Macrophages play an important role in the pathogenesis of atherosclerosis (AS) by mediating oxidative stress, inflammation and lipid metabolism, which can lead to the formation of vascular plaque. The Rac family isoforms of small molecules GTPase are active by binding to GTPase, but are inactivated by binding to GDP, and play a role in the switch of cell information conduction. This experiment adopts shRNA interference THP-1 cells respectively each subtype expression and inhibiting Rac1, Rac2, Rac3 activity, each subtype of Rac family on lipid metabolism, inflammatory reaction and oxidative stress. THP-1 cells were stimulated with Ox-LDL to establish AS cell models including lipid loading, adhesion, migration and chemotaxis. Oil Red O staining, cell immunofluorescence, scratching test, transwell, Western blot and other experiments were performed. To observe the different effects of three subtypes of Rac family on multiple links in the foaming process of THP-1 cells. ApoE-/- mice on a high-fat diet were used as animal models to examine the effects of Rac subtypes in vivo. The results showed that the activation of immune cells induced by ox-LDL was inhibited when Rac1, Rac2 and Rac3 in THP-1 were decreased, respectively. Thus, Rac1 and Rac3 act in combination with ox-LDL and are associated with cellular oxidative stress and inflammation. This study provides new means and ideas for finding potential intervention targets that have important regulatory effects on atherosclerosis, and provides a new direction for the development of clinical drugs.


Assuntos
Aterosclerose , Células Espumosas , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/metabolismo , Células Espumosas/imunologia , Imunidade , Inflamação/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Placa Aterosclerótica/imunologia
19.
J Exp Clin Cancer Res ; 42(1): 255, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773152

RESUMO

BACKGROUND: Chronic stress promotes most hallmarks of cancer through impacting the malignant tissues, their microenvironment, immunity, lymphatic flow, etc. Existing studies mainly focused on the roles of stress-induced activation of systemic sympathetic nervous system and other stress-induced hormones, the organ specificity of chronic stress in shaping the pre-metastatic niche remains largely unknown. This study investigated the role of chronic stress in remodeling lung pre-metastatic niche of breast cancer. METHODS: Breast cancer mouse models with chronic stress were constructed by restraint or unpredictable stress. Expressions of tyrosine hydroxylase, vesicular acetylcholine transporter (VAChT), EpCAM and NETosis were examined by immunofluorescence and confocal microscopy. mRNA and protein levels of choline acetyltransferase (ChAT), VAChT, and peptidylarginine deiminase 4 were detected by qRT-PCR and Western blotting, respectively. Immune cell subsets were analyzed by flow cytometry. Acetylcholine (ACh) and chemokines were detected by ELISA and multi chemokine array, respectively. ChAT in lung tissues from patients was examined by immunohistochemistry. RESULTS: Breast cancer-bearing mice suffered chronic stress metastasized earlier and showed more severe lung metastasis than did mice in control group. VAChT, ChAT and ChAT+ epithelial cells were increased significantly in lung of model mice undergone chronic stress. ACh and chemokines especially CXCL2 in lung culture supernatants from model mice with chronic stress were profoundly increased. Chronic stress remodeled lung immune cell subsets with striking increase of neutrophils, enhanced NETosis in lung and promoted NETotic neutrophils to capture cancer cells. ACh treatment resulted in enhanced NETosis of neutrophils. The expression of ChAT in lung tissues from breast cancer patients with lung metastasis was significantly higher than that in patients with non-tumor pulmonary diseases. CONCLUSIONS: Chronic stress promotes production of CXCL2 that recruits neutrophils into lung, and induces pulmonary epithelial cells to produce ACh that enhances NETosis of neutrophils. Our findings demonstrate for the first time that chronic stress induced epithelial cell derived ACh plays a key role in remodeling lung pre-metastatic niche of breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Feminino , Acetilcolina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pulmão , Células Epiteliais/metabolismo , Quimiocinas , Microambiente Tumoral
20.
Mikrochim Acta ; 190(8): 341, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530902

RESUMO

A novel stimulus-responsive surface-enhanced Raman scattering (SERS) nanoprobe has been developed for sensitive glutathione (GSH) detection based on manganese dioxide (MnO2) core and silver/gold nanoparticles (Ag/Au NPs). The MnO2 core is not only capable to act as a scaffold to amplify the SERS signal via producing "hot spots", but also can be degraded in the presence of the target and thus greatly enhance the nanoprobe sensitivity for sensing of GSH. This approach enables a wide linear range from 1 to 100 µM with a 2.95 µM (3σ/m) detection limit. Moreover, the developed SERS nanoprobe represents great possibility in both sensitive detection of intracellular GSH and even can monitor the change of intracellular GSH level when the stimulant occurs. This sensing system not merely offers a novel strategy for sensitive sensing of GSH, but also provides a new avenue for other biomolecules detection.


Assuntos
Nanopartículas Metálicas , Ouro , Compostos de Manganês , Prata , Óxidos , Glutationa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA