Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172107, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575015

RESUMO

Soil dissolved organic matter (DOM) is the most reactive pool in estuarine marshes, playing an important role in the biogeochemical processes of biogenetic elements. To investigate the impacts of enhanced nitrogen (N) load on DOM molecular composition and its interactions with microbes in typical Cyperus malaccensis mashes of the Min River estuary, a field N load experiment with four N levels (0, 37.50, 50 and 100 g exogenous N m-2 yr-1, respectively; applied monthly for a total of seven months) was performed. DOM molecular composition was characterized by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), the microbial community compositions (MCC, including fungi and bacteria) were determined by high-throughput sequencing technique, and their relationships were presented by co-occurrence network analysis. The results indicated that enhanced N load had significant impacts on soil DOM molecular composition, with N/C and P/C of DOM decreasing but S/C increasing markedly. Meanwhile, enhanced N load decreased the percentages of N2P1 compounds (primarily lipids) but increased those of N4S2 compounds (mainly lignins and lipids). The relative abundances of lignins significantly increased with increasing N load levels, whereas the proportions of lipids decreased. The abundance of N2P1 and N4S2 compounds was primarily positively correlated with eutrophic and oligotrophic microorganisms, respectively. Therefore, mineralization of N2P1 compounds might act as a source to replenish inorganic P, while enrichment of N4S2 compounds may make great contribution to organic S accumulation. Overall, enhanced N load promoted P depletion and S enrichment via altering plant growth, litter decomposition and MCC.


Assuntos
Nitrogênio , Microbiologia do Solo , Solo , Áreas Alagadas , Nitrogênio/análise , Solo/química , Estuários , China , Cyperus , Monitoramento Ambiental
2.
J Hazard Mater ; 465: 133131, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38086297

RESUMO

Decomplexation of Cu(II)-EDTA followed by chemical precipitation of free Cu(II) ions can effectively degrade EDTA in Cu(II)-EDTA and remove Cu(II), but requires large precipitant dosage and inevitably produces a large amount of copper-containing sludge that is difficult to deal with. Herein, we demonstrated that simultaneous reduction of Cu(II) and degradation of EDTA in Cu(II)-EDTA can be achieved by UV irradiation of wastewater containing Cu(II)-EDTA without adding reagent. 93.65% of Cu(II) was reduced to Cu(0) with a high purity of 99.93 wt%, which can be recycled, thus avoiding the generation of copper-containing sludge. 96.67% of EDTA in Cu(II)-EDTA was degraded, and the final products were HCHO, NH4+, NO3- and low-molecular acids. In depth, the dominant degradation mechanism of EDTA in Cu(II)-EDTA was photo-induced successive decarboxylation through homolysis of C-O and C-C bond of -CH2-COOH group, followed by ligand to metal charge transfer (LMCT) and hydrolysis reactions. The minor degradation mechanism of EDTA in Cu(II)-EDTA was successive decarboxylation by •OH radicals. Simultaneously, Cu(II) was reduced to Cu(0) by H• and eaq- produced by UV irradiation of Cu(II)-EDTA. This study provided an approach of simultaneous removal of heavy metals and degradation of EDTA in Cu(II)-EDTA in wastewater containing heavy metal-EDTA complex.

3.
Sci Total Environ ; 912: 168910, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38013101

RESUMO

To investigate the impacts of spatial expansion by Phragmites australis on spatiotemporal variations of sulfur (S) fractions in marsh soils of the Min River estuary (Southeast China), the contents of total sulfur (TS) and inorganic sulfur (IS) fractions (Water-Soluble-S, W-S-S; Adsorbed-S, A-S; HCl-Soluble-S, H-S-S; and HCl-Volatile-S, H-V-S) were determined in soils of Cyperus malaccensis marsh (before expansion, BE stage), P. australis-C. malaccensis marsh (during expansion, DE stage) and P. australis marsh (after expansion, AE stage) by space-for-time substitution method. Results showed that the expansion of P. australis greatly altered the spatiotemporal variations of TS and IS fractions in marsh soils. The TS contents in soils at AE stage were significantly lower than those at DE and BE stages throughout a year (p < 0.01). Higher levels of W-S-S, A-S, H-S-S and total inorganic sulfur (TIS) generally occurred in soils at DE and AE stages, whereas higher values of H-V-S were observed in soils at BE stage. Although P. australis expansion did not alter the temporal variations of TS stock in soils greatly, the values during autumn and winter were generally higher than those in spring and summer (p < 0.05). The highest TIS stocks in soils of different expansion stages were observed in spring, while the lowest values occurred in summer. The expansion of P. australis significantly increased the IS supply capacity of soils and, compared with the BE stage, stocks of W-S-S, A-S, H-S-S and TIS in soils of all sampling seasons at DE and AE stages increased by 51.40 %, 50.76 %, 63.35 %, 50.52 % and 20.00 %, 31.46 %, 42.93 %, 27.56 %, respectively. It was worth noting that stocks of H-V-S in soils at DE and AE stages showed a decreasing trend compared to the BE stage, implying that the expansion of P. australis might reduce the production of sulfides. This paper found that, compared with C. malaccensis, the increased available IS stocks in soils might be an effective strategy for P. australis to maintain its expansion advantage and the decreased volatile-S in soils might be more favorable for boosting its competitiveness. Our study provided valuable information for understanding the interspecific competition mechanism between P. australis and C. malaccensis. Next step, in order to protect the diversity of marsh vegetations in the Min River estuary, effective measures should be taken to suppress the rapid expansion of P. australis.

4.
Water Res ; 243: 120355, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506638

RESUMO

For alkaline wastewater with high arsenic concentration, the traditional lime precipitation inevitably produces large amounts of hazardous waste. Herein, a heat-activated reduction method employing thiourea dioxide (TDO) as the reductant was proposed to efficiently remove and recover As(III)/As(V) from alkaline wastewater in the form of valuable As(0). More than 99.9% of As(III)/As(V) (2-400 mM) were reduced to As(0) with a high purity of more than 99.5 wt% by TDO within 30 min. The highly reductive eaq- and SO2- radical generated during TDO decomposition contribute to the arsenic reduction, and the contribution ratios of eaq- and SO2- radical were estimated to be approximately 57.6% and 42.4% for As(III) removal and 62.2% and 37.8% for As(V) removal, respectively. The arsenic reduction was greatly improved by increasing pH and temperature, which could accelerate the cleavage of C-S bond in TDO for the eaq- and SO2- formation. The presence of dissolved oxygen, which can not only scavenge eaq-/SO2- but also directly oxidize SO22-, had a negative effect on the arsenic removal. The presence of CO32- slightly suppressed the arsenic removal due to the eaq- scavenging effect while SiO32-, PO43-, Cl-, SO42- and NH4+ had negligible effects. The proposed method was a potential technology for the efficient removal and reduction of arsenic in alkaline wastewater.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/química , Oxirredução , Águas Residuárias , Tioureia , Poluentes Químicos da Água/química
5.
J Adv Res ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37392974

RESUMO

BACKGROUND: Soil salinization threatens food security and ecosystem health, and is one of the important drivers to the degradation of many ecosystems around the world. Soil microorganisms have extremely high diversity and participate in a variety of key ecological processes. They are important guarantees for soil health and sustainable ecosystem development. However, our understanding of the diversity and function of soil microorganisms under the change of increased soil salinization is fragmented. AIM OF REVIEW: Here, we summarize the changes in soil microbial diversity and function under the influence of soil salinization in diverse natural ecosystems. We particularly focus on the diversity of soil bacteria and fungi under salt stress and the changes in their emerging functions (such as their mediated biogeochemical processes). This study also discusses how to use the soil microbiome in saline soils to deal with soil salinization for supporting sustainable ecosystems, and puts forward the knowledge gaps and the research directions that need to be strengthened in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW: Due to the rapid development of molecular-based biotechnology (especially high-throughput sequencing technology), the diversity and community composition and functional genes of soil microorganisms have been extensively characterized in different habitats. Clarifying the responding pattern of microbial-mediated nutrient cycling under salt stress and developing and utilizing microorganisms to weaken the adverse effects of salt stress on plants and soil, which are of guiding significance for agricultural production and ecosystem management in saline lands.

6.
J Environ Sci (China) ; 129: 115-127, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36804228

RESUMO

The selective recovery of copper from strongly acidic wastewater containing mixed metal ions remains a significant challenge. In this study, a novel reagent zinc dimethyldithiocarbamate (Zn(DMDC)2) was developed for the selective removal of Cu(II). The removal efficiency of Cu(II) reached 99.6% after 120 min reaction at 30°C when the mole ratio Zn(DMDC)2/Cu(II) was 1:1. The mechanism investigation indicates that the Cu(DMDC)2 products formed as a result of the displacement of Zn(II) from the added Zn(DMDC)2 by Cu(II) in wastewater, due to the formation of stronger coordination bonds between Cu(II) and the dithiocarbamate groups of Zn(DMDC)2. Subsequently, we put forward an innovative process of resource recovery for strongly acidic wastewater. Firstly, the selective removal of Cu(II) from actual wastewater using Zn(DMDC)2, with a removal efficiency of 99.7%. Secondly, high-value CuO was recovered by calcining the Cu(DMDC)2 at 800°C, with a copper recovery efficiency of 98.3%. Moreover, the residual As(III) and Cd(II) were removed by introducing H2S gas, and the purified acidic wastewater was used to dissolve ZnO for preparation of valuable ZnSO4·H2O. The total economic benefit of resource recovery is estimated to be 11.54 $/m3. Accordingly, this study provides a new route for the resource recovery of the treatment of copper-containing acidic wastewater.


Assuntos
Cobre , Ziram , Cobre/química , Águas Residuárias , Metais , Íons
7.
Neurol Res ; 45(1): 41-48, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36302074

RESUMO

OBJECTIVES: Mutation in human FAM134B gene has been implicated in hereditary sensory and autonomic neuropathy type IIB. We aimed to knock out Fam134b in mice and explored its phenotypes to determine whether the genetic impairments and behavioral changes can mirror manifestations noted in humans. METHODS: We used CRISPR/Cas9 technology to knockout the Fam134b gene in the C57BL/6 J mouse. After confirming the knockout was successful by Sanger sequencing and Western blot, sensory function was measured using the hot plate test and the 50% paw withdrawal threshold test. In addition, standard microscopy and transmission electron microscopy were performed to observe the structural changes of the dorsal root ganglion sensory neuron and the sciatic nerve. RESULTS: DNA sequencing and Western blot analysis confirmed the mutation in the Fam134b mutation gene and the loss of expression of its products. Fam134b knockout mice exhibited heat pain insensitivity and mechanical hyperalgesia. Interestingly, limb damage was found in some homozygotes. Demyelination in the sciatic nerve was common. Golgi bodies were turgid in dorsal root ganglion neuron. CONCLUSIONS: These findings indicate that peripheral neuropathy is common in Fam134b KO mice. We believe this novel animal model is likely to have significant future potential as a reliable model for the evaluation of peripheral neuropathy and its complications.


Assuntos
Hiperalgesia , Neurônios , Camundongos , Humanos , Animais , Camundongos Knockout , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Hiperalgesia/metabolismo , Mutação
8.
Ying Yong Sheng Tai Xue Bao ; 33(11): 3007-3015, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384835

RESUMO

To explore the differences in structure and diversity of nirK-type denitrifying microbial community in marsh soils at different invasion stages of Spartina alterniflora, the mudflat (MF, before invasion) and the S. alterniflora marsh after seaward invasion for 1-2 years (SAN) and 6-7 years (SA) in Shanyutan of the Minjiang River estuary were investigated by high-through put sequencing method. Results showed that the seaward invasion of S. alterniflora reduced the richness and diversity of nirK-type denitrifying microbial community in marsh soils. The nirK-type denitrifying microbial community in soils at different invasion stages included Proteobacteria and Actinobacteria, with Proteobacteria as the dominant one. The seaward invasion of S. alterniflora greatly altered the composition of nirK-type denitrifying microbial community in marsh soils. The highest relative abundance of genus in soils from different invasion stages were Bradyrhizobium, Mesorhizobium and Alcaligenes, respectively. The seaward invasion of S. alterniflora increased the spatial heterogeneity of nirK-type denitrifying microbial community composition in marsh soils. In SAN plot, the enhancement of spatial heterogeneity was primarily due to higher environmental disturbances in plots and the increased spatial heterogeneity of environmental variables caused by the seaward invasion of S. alterniflora. The seaward invasion of S. alterniflora altered the physico-chemical properties (e.g., grain composition, pH and moisture) and N nutrient conditions (total N, NH4+-N and NO3--N) in marsh soils, which greatly altered the structure and diversity of nirK-type denitrifying microbial community. Our findings reveal the microbial mechanism of denitrification process in marsh soils during the seaward invasion of S. alterniflora.


Assuntos
Microbiota , Áreas Alagadas , Solo/química , Estuários , Rios , Espécies Introduzidas , Poaceae
9.
Water Res ; 223: 118981, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994788

RESUMO

The removal of arsenic (As(V) and As(III)) from contaminated water has attracted great attention. However, the generation of arsenic-containing hazardous waste by traditional methods has become an inevitable environmental problem. Herein, a UV/sulfite advanced reduction method was proposed to remove As(V) and As(III) from aqueous solution in the form of valuable elemental arsenic (As(0)), thus avoiding the generation of arsenic-containing hazardous waste. The results showed that greater than 99.9% of As(V) and As(III) were reduced to the high purity As(0) (> 99.5 wt%) with the residual arsenic concentration below 10 µg L-1. The hydrated electrons (eaq-), H• and SO3•- radicals are generated by the UV/sulfite process, of which eaq- and H• serve as reductants of As(V) and As(III) while the SO3•- radicals inhibit arsenic reduction by oxidizing arsenic. The effective quantum efficiency (Φ) for the formation of As(0) in the As(V) and As(III) removal process is approximately 0.0078 and 0.0055 mol/Einstein, respectively. The reduction of arsenic is favorable under alkaline conditions (pH > 9.0) due to the higher photolysis efficiency of SO32- than HSO3- (pKa = 7.2) and higher stability of eaq-/H• under alkaline conditions. The presence of dissolved oxygen (O2), NO2-, NO3-, CO32-, PO43- and humic acid (HA) inhibited arsenic reduction through light blocking or eaq-/H• scavenging effects while Cl-, SO42-, Ca2+ and Mg2+ had negligible effects on arsenic reduction. The proposed method can effectively remove and recover arsenic from contaminated water at a low cost, demonstrating feasibility for practical application. This study provides a novel technology for the reductive removal and recovery of arsenic from contaminated water.


Assuntos
Arsênio , Poluentes Químicos da Água , Resíduos Perigosos , Substâncias Húmicas , Dióxido de Nitrogênio , Oxirredução , Oxigênio , Substâncias Redutoras , Sulfitos , Água , Poluentes Químicos da Água/análise
10.
J Hazard Mater ; 438: 129484, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35797788

RESUMO

Sulfide precipitation is an extensively used method to precipitate metal and arsenic from acidic wastewater, whereas the tiny and negatively-charged metal sulfides with poor settling performance are generated. The factors and mechanisms that influence particle size and settling performance remain unclear. Herein, the effects of sulfuration factors, e.g., reagent dosage, acidity and H2S release rate on the particle size and settling performance of metal sulfides were investigated, and involved mechanisms were systematically revealed. The results showed that the reagent dosage and acidity had a limited effect on particle size and settling performance while the H2S release rate played a critical role. Under homogeneous conditions, the decrease in H2S release rate, which can reduce the initial supersaturation and supply the sustainable supersaturation, increased the particle size of metal sulfides generated using Na2S solution. Under heterogeneous conditions, the decrease in H2S release rate further increased the particle size of metal sulfides generated using low-solubility CaS/FeS and further improved settling performance, in which heterogeneous nucleation played a crucial role besides supersaturation. The developed dissolution-diffusion-growth model qualitatively explained the negative relationship between H2S release rate and particle growth. This work provides implications for improving the settling performance of metal sulfides in acidic wastewater.


Assuntos
Arsênio , Sulfeto de Hidrogênio , Ácidos , Tamanho da Partícula , Sulfetos , Águas Residuárias
11.
Environ Sci Technol ; 56(13): 9732-9743, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35724662

RESUMO

The removal of arsenic (As(V) and As(III)) from strongly acidic wastewater using traditional neutralization or sulfuration precipitation methods produces a large amount of arsenic-containing hazardous wastes, which poses a potential threat to the environment. In this study, an ultraviolet/formic acid (UV/HCOOH) process was proposed to reductively remove and recover arsenic from strongly acidic wastewater in the form of valuable elemental arsenic (As(0)) products to avoid the generation of hazardous wastes. We found that more than 99% of As(V) and As(III) in wastewater was reduced to highly pure solid As(0) (>99.5 wt %) by HCOOH under UV irradiation. As(V) can be efficiently reduced to As(IV) (H2AsO3 or H4AsO4) by hydrogen radicals (H•) generated from the photolysis of HCOOH through dehydroxylation or hydrogenation. Then, As(IV) is reduced to As(III) by H• or through its disproportionation. The reduction of As(V) to H4AsO4 by H• and the disproportionation of H4AsO4 are the main reaction processes. Subsequently, As(III) is reduced to As(0) not only by H• through stepwise dehydroxylation but also through the disproportionation of intermediate arsenic species As(II) and As(I). With additional density functional theory calculations, this study provides a theoretical foundation for the reductive removal of arsenic from acidic wastewater.


Assuntos
Arsênio , Poluentes Químicos da Água , Ácidos , Formiatos , Resíduos Perigosos , Oxirredução , Raios Ultravioleta , Águas Residuárias
12.
Ying Yong Sheng Tai Xue Bao ; 33(4): 1003-1011, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35543053

RESUMO

We examined the effects of Spartina alterniflora invasion on phosphorus forms of marsh soils, based on the method of space-for-time substitution by selecting S. alterniflora marshes with different invasion years (SA1, 5-6 years; SA2, 8-10 years; and SA3, 12-14 years) in Shanyutan of the Minjiang River estuary. The results showed that in marsh soils of different invasion years, the proportion of hardly decomposable phosphorus (HCl-Pi and Residual-P) was the highest (46.4%-46.7%), followed by moderately decomposable phosphorus (NaOH-Pi, NaOH-Po and Sonic-Pi) (40.0%-44.0%), and the easily decomposable phosphorus (Resin-Pi, NaHCO3-Pi and NaHCO3-Po) was the lowest (9.5%-13.3%). With increasing invasion years of S. alterniflora, soil phosphorus forms and their spatial distributions were greatly altered. The contents of moderately decomposable phosphorus, hardly decomposable phosphorus, and total phosphorus (TP) generally increased, while easily decomposable phosphorus content generally decreased. Compared with SA1, the contents of moderately decomposable phosphorus, hardly decomposable phosphorus and TP in SA2 increased by 11.5%, 9.7% and 10.5%, while those in SA3 increased by 24.8%, 13.2% and 13.5%, respectively. The distribution of phosphorus forms was greatly altered with increasing invasion years, which was dependent on the variations of key factors such as EC, pH value and grain composition. The implementation of regular mowing activities for S. alterniflora in the Minjiang River estuary in recent years, to some extent, reduced the return of phosphorus from residues to soils and decreased the availability of the easily decomposable phosphorus in soils.


Assuntos
Solo , Áreas Alagadas , China , Estuários , Espécies Introduzidas , Fósforo/análise , Poaceae , Rios , Hidróxido de Sódio , Solo/química
13.
J Environ Sci (China) ; 120: 1-8, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35623763

RESUMO

Recycling strongly acidic wastewater as diluted H2SO4 after contaminants contained being removed was previously proposed, however, Cl(-I), a kind of contaminant contained in strongly acidic wastewater, is difficult to remove, which severely degrades the quality of recycled H2SO4. In this study, the removal of Cl(-I) using PbO2 was investigated and the involved mechanisms were explored. The removal efficiency of Cl(-I) reached 93.38% at 50℃ when PbO2/Cl(-I) mole ratio reached 2:1. The identification of reaction products shows that Cl(-I) was oxidized to Cl2, and PbO2 was reduced to PbSO4. Cl2 was absorbed by NaOH to form NaClO, which was used for the regeneration of PbO2 from the generated PbSO4. Cl(-I) was removed through two pathways, i.e., surface oxidation and •OH radical oxidation. •OH generated by the reaction of PbO2 and OH- plays an important role in Cl(-I) removal. The regenerated PbO2 had excellent performance to remove Cl(-I) after six-time regeneration. This study provided an in-depth understanding on the effective removal of Cl(-I) by the oxidation method.


Assuntos
Reciclagem , Águas Residuárias , Oxirredução
14.
Mar Pollut Bull ; 180: 113757, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35596999

RESUMO

To explore the pollution levels, sources and risks of heavy metals in sediments in Fuzhou reach of the Min River, the sediments involving in seven marsh types were sampled. Results showed that the concentrations of Pb, Zn and Cd in sediments declined from freshwater segment to estuarine segment. Higher levels of Cu, Cr and Ni in sediments generally occurred in estuarine segment. The highest levels of Pb and Cd were observed in bush swamp, while those of Cr, Ni, Zn and Cu occurred in mudflat. Cr, Cu, Zn and Ni probably shared common source, while Pb and Cd originated from another source. Pb and Cd were identified as heavy metals of primary concerns and the former showed high potential toxicity and high contributions to ΣTUs. Next step, the metal pollutions in sediments might be more serious if effective measures were not taken to control the loading of pollutants.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Chumbo , Metais Pesados/análise , Medição de Risco , Rios , Poluentes Químicos da Água/análise , Áreas Alagadas
15.
Ying Yong Sheng Tai Xue Bao ; 33(2): 560-568, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35229531

RESUMO

Sulfur oxidation-reduction process (SORP) in marsh soil is an important link in sulfur cycle, which plays an important role in maintaining the stability and health of marsh. We summarized the SORP in marsh soil and its influencing factors, and analyzed the research progress of its coupling effects with other elements. The influencing factors of SORP in marsh soil mainly involved biotic (plants, microorganisms, zoobenthos, human activities, etc.) and abiotic factors (physical factors such as temperature, moisture and particle size, and chemical factors such as pH, salinity, organic matter, etc.). Related research on the coupling effects of SORP and other elements in marsh soil mainly involved in biogenic elements such as carbon (C), nitrogen (N) and phosphorus (P), and metal elements such as iron (Fe) and manganese (Mn). Currently, the underlying mechanism of SORP was not deeply explored, the research on coupling effects was unbalance, and the ecological effects were insufficient. In the future, key functional microorganisms involved in SORP should be strengthened, the coupling mechanism between SORP and micro-elements should be enhanced, and the ecological effects produced by the coupling effects of SORP with other elements should be emphasized.


Assuntos
Solo , Áreas Alagadas , Carbono , Humanos , Oxirredução , Solo/química , Enxofre
16.
Sci Total Environ ; 824: 153909, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35183638

RESUMO

Large quantities of wastewaters containing high concentrations of Cl(-I) can be generated in several industries when chloride-containing materials and additive agents are employed. Because Cl(-I) is unavailable to microorganisms, physicochemical methods are generally used for the removal of Cl(-I); however, as the most stable form of chlorine under aqueous conditions, Cl(-I) in wastewaters is difficult to remove to achieve low residual concentrations through common physicochemical methods. This paper provides new insights into traditional precipitation, oxidation, ion exchange and physical separation methods, as well as newly developed approaches, for Cl(-I) removal from various industrial wastewaters through analysis of the mechanisms, applicable conditions, optimum parameters, and method advantages and disadvantages. Moreover, the developmental trends and potential improvements to these approaches are also presented. Currently, precipitation is the most common and efficient Cl(-I) removal method, for which ultraviolet (UV) light is regarded as an effective means of improvement. Additionally, advanced oxidation processes (AOPs), where Cl(-I) can be oxidized to generate Cl radicals, Cl2- radicals, Cl2 gas, etc., show great promise for Cl(-I) removal. This review provides a theoretical foundation for the effective treatment and for the secondary utilization of industrial wastewaters containing Cl(-I).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloretos/análise , Cloro/análise , Peróxido de Hidrogênio/análise , Oxirredução , Raios Ultravioleta , Águas Residuárias/análise , Poluentes Químicos da Água/análise
17.
Environ Technol ; 43(15): 2329-2341, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33446066

RESUMO

Employing ultraviolet light to enhance the removal of As(V) by sulfide (S(-II)) from strongly acidic wastewater is a potential method. However, we found the arsenic trisulfide (As2S3) and elemental sulfur (S8) particles formed in this method not only vastly hinder light transmission in the wastewater but also undergo light-induced redissolution, leading to a decrease in removal rate and efficiency of As(V). Herein, As(V) removal by sulfide from strongly acidic wastewater was performed in a modified photochemical reactor to weaken the effect of the formed particles on As(V) removal. It was found that in this study, the formed particles could be efficiently removed from the photoreactor by three operations, i.e. circulation-filtration, septum setting, and lamp sleeve cleaning. The removal of As(V) was approximately 11-fold faster than that without three operations, saving 90.9% of the reaction time and 89.4% of energy consumption. The removal efficiency of As(V) also increased through weakening the light-induced redissolution of the formed particles. This study facilitates the practical application of the UV light promoted As(V) removal technology and also provides a new method to lessen the light-blocking effect in the particle-forming photochemical reaction systems.


Assuntos
Sulfetos , Águas Residuárias , Ácidos , Reatores Biológicos , Enxofre , Raios Ultravioleta
18.
J Hazard Mater ; 421: 126745, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34364206

RESUMO

Sulfide precipitation is an efficient method to remove Cu(II) and As(III) from strongly acidic wastewater, but the instantaneous release of H2S from traditional sulfuration reagents causes serious H2S pollution. Moreover, the obtained precipitates are mixtures of CuS and As2S3, leading to difficulties in resource recovery. In this study, a calcium sulfide-organosilicon complex (CaS-OSCS), in which CaS was coated into a matrix of {[O1.5Si(CH2)3NH]CS}n (OSCS) via the coordination bonding, was developed. OSCS, as a matrix of CaS-OSCS, can ensure the sustained and stable release of H2S under strongly acidic conditions owing to its low swelling (1.75% swelling ratio) and excellent acid resistance. The release longevity of H2S from CaS-OSCS extended from 5 min up to 50 min compared with that from CaS because the hydrophobic OSCS prevented solution diffusing to the pores of CaS-OSCS and thus slowed down the hydrolysis of CaS in pores. 99% of Cu(II)/As(III) was precipitated without H2S escape, and the dosage of sulfuration reagents was reduced by 30%. In addition, CaS-OSCS improved the selective separation of copper from wastewater, and a separation factor between Cu(II) and As(III) reached 2376. This study provides a potential approach for the elimination of H2S pollution and selective recovery of copper.


Assuntos
Sulfeto de Hidrogênio , Águas Residuárias , Compostos de Cálcio , Preparações de Ação Retardada , Sulfetos
19.
J Hazard Mater ; 416: 126233, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492986

RESUMO

Strongly acidic wastewater generated from the molybdenum and copper smelting process is of great value for recycling sulfuric acid and valuable metals, such as rhenium (Re). Herein, a high Re(VII) (HReO4) recovery efficiency of 99% within 35 min from strongly acidic wastewater was successfully achieved by using sulphide coupled with ultraviolet (UV) light, and soluble Re(VII) precipitated as Re2S7 in this process. Mechanistic experiments showed that the intermediate Re-S species (i.e., HReO3S) was the dominant limitation responsible for Re(VII) precipitation in the dark, and UV irradiation dramatically accelerated the generation and conversion of HReO3S by inducing the formation of HS• and H•. The H• produced from the photodissociation of H2S promoted HReO4 transformation to H2ReO4•, which rapidly reacted with HS• to produce HReO3S, accelerating the conversion of HReO4. The radical-induced acceleration can also take place during the HReO3S conversion by slowly introducing H2S into the strongly acidic wastewater to continuously produce H• and HS•. This work offers an insight into the improvement of Re(VII) recovery by UV light, which can be potentially applied into resource recovery from strongly acidic wastewater.


Assuntos
Rênio , Águas Residuárias , Aceleração , Sulfetos , Raios Ultravioleta
20.
J Hazard Mater ; 419: 126390, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34148001

RESUMO

Large amounts of hazardous arsenic sulfide (As2S3) wastes are generated in many industries. These wastes, which are extremely unstable and can partially transform into highly soluble arsenic oxide (As2O3) and then transform into As2S3 and As2O3 mixed wastes (ASOW), are difficult to be solidified/stabilized using common binders. This study proposed a thermally initiated copolymerization method employing elemental sulfur (S8) to chemically solidify/stabilize ASOW. Under thermal conditions (140-200 °C), the elemental sulfur rings break and polymerize into diradical polymeric sulfur chains (•S-(S)m-S•). The ASOW is solidified/stabilized not only by transforming As2S3 into poly(As2S3-r-S) copolymers through copolymerization of •S-(S)m-S• with As2S3 but also by transforming As2O3 into As2S3 in the presence of poly(As2S3-r-S) copolymers. However, the sulfur chain in poly(As2S3-r-S) copolymers gradually crystallizes into S8 after long-term aging, resulting in the depolymerization of copolymers. Dicyclopentadiene (DCP) greatly improves the long-term stability of the solidified body through maintaining the sulfur chain form by forming highly stable poly(As2S3-r-S-r-DCP) copolymers. The solidified body showed high compressive strength (25.7 MPa) and low leaching concentration of arsenic (<1.2 mg L-1) even after 732 days of aging. This study provides a theoretical foundation for the S8-based chemical solidification/stabilization of ASOW as well as other sulfide-containing wastes.


Assuntos
Arsênio , Óxidos , Arsenicais , Indenos , Sulfetos , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA