Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Chim Acta ; 560: 119729, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754575

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) fragmentomic characteristics are promising analytes with abundant physiological signals for non-invasive disease diagnosis and monitoring. Previous studies on plasma cfDNA fragmentomics commonly employed a two-step centrifugation process for removing cell debris, involving a low-speed centrifugation followed by a high-speed centrifugation. However, the effects of centrifugation conditions on the analysis of cfDNA fragmentome remain uncertain. METHODS: We collected blood samples from 10 healthy individuals and divided each sample into two aliquots for plasma preparation with one- and two-step centrifugation processes. We performed whole genome sequencing (WGS) of the plasma cfDNA in the two groups and comprehensively compared the cfDNA fragmentomic features. Additionally, we reanalyzed the fragmentomic features of cfDNA from 16 healthy individuals and 16 COVID-19 patients, processed through one- and two-step centrifugation in our previous study, to investigate the impact of centrifugation on disease signals. RESULTS: Our results showed that there were no significant differences observed in the characteristics of nuclear cfDNA, including size, motif diversity score (MDS) of end motifs, and genome distribution, between plasma samples treated with one- and two-step centrifugation. The cfDNA size shortening in COVID-19 patients was observed in plasma samples with one- and two-step centrifugation methods. However, we observed a significantly higher relative abundance and longer size of cell-free mitochondrial DNA (mtDNA) in the one-step samples compared to the two-step samples. This difference in mtDNA caused by the one- and two-step centrifugation methods surpasses the pathological difference between COVID-19 patients and healthy individuals. CONCLUSIONS: Our findings indicate that one-step low-speed centrifugation is a simple and potentially suitable method for analyzing nuclear cfDNA fragmentation characteristics. These results offer valuable guidance for cfDNA research in various clinical scenarios.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Centrifugação , SARS-CoV-2 , Humanos , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/isolamento & purificação , Ácidos Nucleicos Livres/genética , COVID-19/sangue , COVID-19/diagnóstico , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Coleta de Amostras Sanguíneas , Masculino , Feminino , Sequenciamento Completo do Genoma , Adulto
2.
Med Image Anal ; 94: 103136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38489895

RESUMO

Decoding brain states under different cognitive tasks from functional magnetic resonance imaging (fMRI) data has attracted great attention in the neuroimaging filed. However, the well-known temporal dependency in fMRI sequences has not been fully exploited in existing studies, due to the limited temporal-modeling capacity of the backbone machine learning algorithms and rigid training sample organization strategies upon which the brain decoding methods are built. To address these limitations, we propose a novel method for fine-grain brain state decoding, namely, group deep bidirectional recurrent neural network (Group-DBRNN) model. We first propose a training sample organization strategy that consists of a group-task sample generation module and a multiple-scale random fragment strategy (MRFS) module to collect training samples that contain rich task-relevant brain activity contrast (i.e., the comparison of neural activity patterns between different tasks) and maintain the temporal dependency. We then develop a novel decoding model by replacing the unidirectional RNNs that are widely used in existing brain state decoding studies with bidirectional stacked RNNs to better capture the temporal dependency, and by introducing a multi-task interaction layer (MTIL) module to effectively model the task-relevant brain activity contrast. Our experimental results on the Human Connectome Project task fMRI dataset (7 tasks consisting of 23 task sub-type states) show that the proposed model achieves an average decoding accuracy of 94.7% over the 23 fine-grain sub-type states. Meanwhile, our extensive interpretations of the intermediate features learned in the proposed model via visualizations and quantitative assessments of their discriminability and inter-subject alignment evidence that the proposed model can effectively capture the temporal dependency and task-relevant contrast.


Assuntos
Encéfalo , Conectoma , Humanos , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Conectoma/métodos , Algoritmos , Imageamento por Ressonância Magnética/métodos
3.
J Neural Eng ; 21(2)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38407988

RESUMO

Objective: Using functional magnetic resonance imaging (fMRI) and deep learning to discover the spatial pattern of brain function, or functional brain networks (FBNs) has been attracted many reseachers. Most existing works focus on static FBNs or dynamic functional connectivity among fixed spatial network nodes, but ignore the potential dynamic/time-varying characteristics of the spatial networks themselves. And most of works based on the assumption of linearity and independence, that oversimplify the relationship between blood-oxygen level dependence signal changes and the heterogeneity of neuronal activity within voxels.Approach: To overcome these problems, we proposed a novel spatial-wise attention (SA) based method called Spatial and Channel-wise Attention Autoencoder (SCAAE) to discover the dynamic FBNs without the assumptions of linearity or independence. The core idea of SCAAE is to apply the SA to generate FBNs directly, relying solely on the spatial information present in fMRI volumes. Specifically, we trained the SCAAE in a self-supervised manner, using the autoencoder to guide the SA to focus on the activation regions. Experimental results show that the SA can generate multiple meaningful FBNs at each fMRI time point, which spatial similarity are close to the FBNs derived by known classical methods, such as independent component analysis.Main results: To validate the generalization of the method, we evaluate the approach on HCP-rest, HCP-task and ADHD-200 dataset. The results demonstrate that SA mechanism can be used to discover time-varying FBNs, and the identified dynamic FBNs over time clearly show the process of time-varying spatial patterns fading in and out.Significance: Thus we provide a novel method to understand human brain better. Code is available athttps://github.com/WhatAboutMyStar/SCAAE.


Assuntos
Mapeamento Encefálico , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Atenção
4.
J Infect Dis ; 230(2): 455-466, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38324766

RESUMO

BACKGROUND: MF59-adjuvanted gB subunit (gB/MF59) vaccine demonstrated approximately 50% efficacy against human cytomegalovirus (HCMV) acquisition in multiple clinical trials, suggesting that efforts to improve this vaccine design might yield a vaccine suitable for licensure. METHODS: A messenger RNA (mRNA)-based vaccine candidate encoding HCMV gB and pentameric complex (PC), mRNA-1647, is currently in late-stage efficacy trials. However, its immunogenicity has not been compared to the partially effective gB/MF59 vaccine. We assessed neutralizing and Fc-mediated immunoglobulin G (IgG) effector antibody responses induced by mRNA-1647 in both HCMV-seropositive and -seronegative vaccinees from a first-in-human clinical trial through 1 year following third vaccination using a systems serology approach. Furthermore, we compared peak anti-gB antibody responses in seronegative mRNA-1647 vaccinees to that of seronegative gB/MF59 vaccine recipients. RESULTS: mRNA-1647 vaccination elicited and boosted HCMV-specific IgG responses in seronegative and seropositive vaccinees, respectively, including neutralizing and Fc-mediated effector antibody responses. gB-specific IgG responses were lower than PC-specific IgG responses. gB-specific IgG and antibody-dependent cellular phagocytosis responses were lower than those elicited by gB/MF59. However, mRNA-1647 elicited higher neutralization and antibody-dependent cellular cytotoxicity (ADCC) responses. CONCLUSIONS: Overall, mRNA-1647 vaccination induced polyfunctional and durable HCMV-specific antibody responses, with lower gB-specific IgG responses but higher neutralization and ADCC responses compared to the gB/MF59 vaccine. CLINICAL TRIALS REGISTRATION: NCT03382405 (mRNA-1647) and NCT00133497 (gB/MF59).


Assuntos
Adjuvantes Imunológicos , Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Citomegalovirus , Polissorbatos , Esqualeno , Vacinas de mRNA , Humanos , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Citomegalovirus/imunologia , Citomegalovirus/genética , Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia , Polissorbatos/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Esqualeno/administração & dosagem , Esqualeno/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética
5.
Brain Struct Funct ; 229(2): 431-442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193918

RESUMO

Disentangling functional difference between cortical folding patterns of gyri and sulci provides novel insights into the relationship between brain structure and function. Previous studies using resting-state functional magnetic resonance imaging (rsfMRI) have revealed that sulcal signals exhibit stronger high-frequency but weaker low-frequency components compared to gyral ones, suggesting that gyri may serve as functional integration centers while sulci are segregated local processing units. In this study, we utilize naturalistic paradigm fMRI (nfMRI) to explore the functional difference between gyri and sulci as it has proven to record stronger functional integrations compared to rsfMRI. We adopt a convolutional neural network (CNN) to classify gyral and sulcal fMRI signals in the whole brain (the global model) and within functional brain networks (the local models). The frequency-specific difference between gyri and sulci is then inferred from the power spectral density (PSD) profiles of the learned filters in the CNN model. Our experimental results show that nfMRI shows higher gyral-sulcal PSD contrast effect sizes in the global model compared to rsfMRI. In the local models, the effect sizes are either increased or decreased depending on frequency bands and functional complexity of the FBNs. This study highlights the advantages of nfMRI in depicting the functional difference between gyri and sulci, and provides novel insights into unraveling the relationship between brain structure and function.


Assuntos
Córtex Cerebral , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Cabeça
6.
Traffic Inj Prev ; 25(3): 372-380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38240567

RESUMO

OBJECTIVE: This study aimed to examine the impact of non-driving-related tasks (NDRTs) on drivers in highly automated driving scenarios and sought to develop a deep learning model for classifying mental workload using electroencephalography (EEG) signals. METHODS: The experiment involved recruiting 28 participants who engaged in simulations within a driving simulator while exposed to 4 distinct NDRTs: (1) reading, (2) listening to radio news, (3) watching videos, and (4) texting. EEG data collected during NDRTs were categorized into 3 levels of mental workload, high, medium, and low, based on the NASA Task Load Index (NASA-TLX) scores. Two deep learning methods, namely, long short-term memory (LSTM) and bidirectional long short-term memory (BLSTM), were employed to develop the classification model. RESULTS: A series of correlation analyses revealed that the channels and frequency bands are linearly correlated with mental workload. The comparative analysis of classification results demonstrates that EEG data featuring significantly correlated frequency bands exhibit superior classification accuracy compared to the raw EEG data. CONCLUSIONS: This research offers a reference for assessing mental workload resulting from NDRTs in the context of highly automated driving. Additionally, it delves into the development of deep learning classifiers for EEG signals with heightened accuracy.


Assuntos
Condução de Veículo , Aprendizado Profundo , Humanos , Análise e Desempenho de Tarefas , Acidentes de Trânsito , Carga de Trabalho , Eletroencefalografia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38163310

RESUMO

Vision transformer (ViT) and its variants have achieved remarkable success in various tasks. The key characteristic of these ViT models is to adopt different aggregation strategies of spatial patch information within the artificial neural networks (ANNs). However, there is still a key lack of unified representation of different ViT architectures for systematic understanding and assessment of model representation performance. Moreover, how those well-performing ViT ANNs are similar to real biological neural networks (BNNs) is largely unexplored. To answer these fundamental questions, we, for the first time, propose a unified and biologically plausible relational graph representation of ViT models. Specifically, the proposed relational graph representation consists of two key subgraphs: an aggregation graph and an affine graph. The former considers ViT tokens as nodes and describes their spatial interaction, while the latter regards network channels as nodes and reflects the information communication between channels. Using this unified relational graph representation, we found that: 1) model performance was closely related to graph measures; 2) the proposed relational graph representation of ViT has high similarity with real BNNs; and 3) there was a further improvement in model performance when training with a superior model to constrain the aggregation graph.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA