Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6682): eadj9198, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38300992

RESUMO

Mapping single-neuron projections is essential for understanding brain-wide connectivity and diverse functions of the hippocampus (HIP). Here, we reconstructed 10,100 single-neuron projectomes of mouse HIP and classified 43 projectome subtypes with distinct projection patterns. The number of projection targets and axon-tip distribution depended on the soma location along HIP longitudinal and transverse axes. Many projectome subtypes were enriched in specific HIP subdomains defined by spatial transcriptomic profiles. Furthermore, we delineated comprehensive wiring diagrams for HIP neurons projecting exclusively within the HIP formation (HPF) and for those projecting to both intra- and extra-HPF targets. Bihemispheric projecting neurons generally projected to one pair of homologous targets with ipsilateral preference. These organization principles of single-neuron projectomes provide a structural basis for understanding the function of HIP neurons.


Assuntos
Axônios , Mapeamento Encefálico , Hipocampo , Neurônios , Animais , Camundongos , Axônios/fisiologia , Axônios/ultraestrutura , Hipocampo/ultraestrutura , Neurônios/classificação , Neurônios/ultraestrutura , Análise de Célula Única/métodos , Rede Nervosa , Masculino , Camundongos Endogâmicos C57BL
2.
Nat Neurosci ; 25(4): 515-529, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361973

RESUMO

Prefrontal cortex (PFC) is the cognitive center that integrates and regulates global brain activity. However, the whole-brain organization of PFC axon projections remains poorly understood. Using single-neuron reconstruction of 6,357 mouse PFC projection neurons, we identified 64 projectome-defined subtypes. Each of four previously known major cortico-cortical subnetworks was targeted by a distinct group of PFC subtypes defined by their first-order axon collaterals. Further analysis unraveled topographic rules of soma distribution within PFC, first-order collateral branch point-dependent target selection and terminal arbor distribution-dependent target subdivision. Furthermore, we obtained a high-precision hierarchical map within PFC and three distinct functionally related PFC modules, each enriched with internal recurrent connectivity. Finally, we showed that each transcriptome subtype corresponds to multiple projectome subtypes found in different PFC subregions. Thus, whole-brain single-neuron projectome analysis reveals organization principles of axon projections within and outside PFC and provides the essential basis for elucidating neuronal connectivity underlying diverse PFC functions.


Assuntos
Neurônios , Córtex Pré-Frontal , Animais , Axônios , Encéfalo , Interneurônios , Camundongos , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA