Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Sci ; 40(6): 1071-1080, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38483788

RESUMO

In this paper, we optimized a method for fast and accurate determination of five impurity elements (As, Sb, Bi, Se, and Ge) in graphite samples to overcome the shortcomings of existing methods, such as complicated equipment, cumbersome process, multiple-time preparation, separate determination, and large error in results. Graphite samples were digested with HNO3-H2SO4-HClO4-HF in a high-temperature and high-pressure microwave digestion apparatus, and the elements were extracted and determined separately by AFS (atomic fluorescence spectrometry). There is no element loss during the processing and analysis of this method. The spike recoveries (As: 90.30%-102.3%, Sb: 90.73%-110.0%, Bi: 90.00%-99.67%, Se: 93.33%-110.0%, Ge: 92.26%-104.2%) and precision (RSD%; As: 1.34%-8.96%, Sb: 2.67%-7.10%, Bi: 1.83%-4.58%, Se: 0.36%-3.25%, Ge: 4.41%-8.65%) meet the requirements of the corresponding quality specifications. The method has some advantages (such as no elemental loss, fast testing, strong element targeting, and accurate results), and thus can achieve batch determination of graphite samples. The optimized method for graphite sample and final solution preparations can be used for diverse spectrometric technologies, and that for spectrometer conditions have reference value for HG-AFS instruments.

2.
Bio Protoc ; 7(5): e2165, 2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458478

RESUMO

Lichens are good biomonitors for air pollution because of their high enrichment capability of atmospheric chemical elements. To monitor atmospheric element deposition using lichens, it is important to obtain information on the multi-element concentrations in lichen thalli. Because of serious air pollution, elemental concentrations in thalli of lichens from North China (especially Inner Mongolia, Hebei, Shanxi and Henan province) are often higher than those from other regions, therefore highlighting the necessity to optimize ICP-AES/MS (Inductively coupled plasma-atomic emission spectroscopy/mass spectrometry) for analyzing lichen element content. Based on the high elemental concentrations in the lichen samples, and the differences in the sensitivity and detection limits between ICP-MS and ICP-AES, we propose a protocol for analyzing 31 elements in lichens using ICP-AES/MS. Twenty-two elements (Cd, Ce, Co, Cr, Cs, Cu, K, La, Mo, Na, Ni, Pb, Rb, Sb, Sc, Sm, Sr, Tb, Th, Tl, V and Zn) can be identified by using microwave digestion- ICP-MS, and 9 elements (Al, Ba, Ca, Fe, Mg, Mn, P, S and Ti) by using ashing-alkali fusion digestion- ICP-AES.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA