RESUMO
Growing three-dimensional (3D) metal organic frameworks (MOFs) via heterogeneous epitaxial growth on metal hydroxide arrays are effective for constructing electrochemical sensor. However, the growth of MOFs is difficult to control, resulting in thick and irregular morphologies and even damage the metal hydroxide template. In this work, Cu3(HHTP)2 (HHTP = 2, 3, 6, 7, 10, 11-hexahydroxytriphenylene) films with controllable thickness and morphology were successfully prepared on Cu(OH)2 nanowire arrays (NWAs) through layer-by-layer (LBL) growth method. We have discovered that the LBL cycle and the reaction solvent composition are crucial for growing homogenous MOF thin films. The Cu3(HHTP)2 based ascorbic acid (AA) sensor, fabricated in ethanol within 10 LBL cycles, generated an ultrahigh sensitivity of 821.64 µA mM-1 cm-2 in the range of 6-981.41 µM, a low detection limit of 60 nM as well as the great selectivity, stability and reproducibility. Moreover, the relative deviation for AA detection in two fruit juices were 3.22 % and 3.71 %, and the test result for human sweat fall within the normal AA concentration range, verifying the feasibility of as-prepared sensor for practical application.
Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Nanofios , Humanos , Reprodutibilidade dos Testes , Ácido Ascórbico , HidróxidosRESUMO
Metal organic frameworks are an attractive platform to develop fascinating electrocatalysts for the oxidation of ascorbic acid (AA), and their different morphologies have been hinted in literature to impact their sensing performance. In this work, by varying the reaction medium of metal source and organic ligand, copper 2-hydroxybenzene-1,4-dicarboxylate (CuBDC-OH) nanosheets (NSs), nanorods (NRs) and bulk were generated. Thereinto, CuBDC-OH-NSs displayed the highest sensitivity of 151.99µA mM-1cm-2in the linear range of 12-1074µM, which is 1.5 times greater than that of CuBDC-OH NRs and 3.5 times greater than that of CuBDC-OH bulk. The electrochemical analyzes manifested that the superiority of nanosheets originated from higher oxidative current, larger electrochemical active surface area and lower charge transfer resistance, which enabling the efficient electro-oxidation of AA. Additionally, satisfactory selectivity, stability and reproducibility were obtained.