Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
World J Clin Cases ; 12(19): 3950-3955, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38994291

RESUMO

BACKGROUND: We report a case of eye-penetrating injury in which a massive silicone oil migration into the patient's subconjunctival space and orbit occurred after vitrectomy. CASE SUMMARY: A 30-year-old male patient sought medical attention at Ganzhou People's Hospital after experiencing pain and vision loss in his left eye due to a nail wound on December 9, 2023. Diagnosis of penetrating injury caused by magnetic foreign body retention in the left eye and hospitalization for treatment. On December 9, 2023, pars plana vitrectomy was performed on the left eye for intraocular foreign body removal, abnormal crystal extraction, retinal photocoagulation. Owing to the discovery of retinal detachment at the posterior pole during surgery, silicone oil was injected to fill the vitreous body, following which upper conjunctival bubble-like swelling was observed. Postoperative orbital computed tomography (CT) review indicated migration of silicone oil to the subconjunctival space and orbit through a self-permeable outlet. On December 18, 2023, the patient sought treatment at the First Affiliated Hospital of Nanchang University, China. The patient presented with a pronounced foreign body sensation following left eye surgery. On December 20, 2023, the foreign body was removed from the left eye frame and an intraocular examination was conducted. The posterior scleral tear had closed, leading to termination of the surgical procedure following supplementary laser treatment around the tear. The patient reported a significant reduction in ocular surface symptoms just one day after surgery. Furthermore, a notable decrease in the migration of silicone oil was observed in orbital CT scans. CONCLUSION: The timing of silicone oil injection for an eye-penetrating injury should be carefully evaluated to avoid the possibility of silicone oil migration.

2.
J Acoust Soc Am ; 155(6): 3678-3689, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847592

RESUMO

Numerous advanced and lightweight signal processing methods have been presented for single-channel speech enhancement (SE). It is imperative to carefully explore how to efficiently combine, integrate, and balance these methods. This paper proposes a more effective and less resource-intensive SE system, focused on the integration and adaptation of several approaches, especially the temporal cepstrum smoothing (TCS). First, a more robust fundamental frequency estimator is employed within TCS, mitigating the performance limitations caused by the inaccuracy of the original estimator. Additionally, a harmonic enhancement mechanism is introduced, effectively recovering the weak harmonic components. By incorporation of the modified TCS in the a posteriori speech presence probability estimation, the unbiased minimum mean square error noise power spectral density estimator can be refined. The modified TCS is also utilized for the a priori signal-to-noise ratio estimation. Moreover, this paper enhances the log-spectral amplitude estimator by applying both super-Gaussian speech priors and speech presence uncertainty for further improvement. Experimental evaluations demonstrate that the proposed method yields an improvement in speech quality while maintaining modest computational and storage requirements. Furthermore, the proposed system exhibits comparable performance to several baseline systems based on lightweight deep neural networks.

3.
Adv Mater ; : e2404172, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734973

RESUMO

Aqueous aluminum ion batteries (AAIBs) hold significant potential for grid-scale energy storage owing to their intrinsic safety, high theoretical capacity, and abundance of aluminum. However, the strong electrostatic interactions and delayed charge compensation between high-charge-density aluminum ions and the fixed lattice in conventional cathodes impede the development of high-performance AAIBs. To address this issue, this work introduces, for the first time, high-entropy Prussian blue analogs (HEPBAs) as cathodes in AAIBs with unique lattice tolerance and efficient multipath electron transfer. Benefiting from the intrinsic long-range disorder and robust lattice strain field, HEPBAs enable the manifestation of the lattice respiration effect and minimize lattice volume changes, thereby achieving one of the best long-term stabilities (91.2% capacity retention after 10 000 cycles at 5.0 A g-1) in AAIBs. Additionally, the interaction between the diverse metal atoms generates a broadened d-band and reduced degeneracy compared with conventional Prussian blue and its analogs (PBAs), which enhances the electron transfer efficiency with one of the best rate performance (79.2 mAh g-1 at 5.0 A g-1) in AAIBs. Furthermore, exceptional element selectivity in HEPBAs with unique cocktail effect can facile tune electrochemical behavior. Overall, the newly developed HEPBAs with a high-entropy effect exhibit promising solutions for advancing AAIBs and multivalent-ion batteries.

4.
Polymers (Basel) ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611176

RESUMO

Within the realm of dental material innovation, this study pioneers the incorporation of tung oil into polyurea coatings, setting a new precedent for enhancing self-healing functionality and durability. Originating from an ancient practice, tung oil is distinguished by its outstanding water resistance and microbial barrier efficacy. By synergizing it with polyurea, we developed coatings that unite mechanical strength with biological compatibility. The study notably quantifies self-healing efficiency, highlighting the coatings' exceptional capacity to mend physical damages and thwart microbial incursions. Findings confirm that tung oil markedly enhances the self-repair capabilities of polyurea, leading to improved wear resistance and the inhibition of microbial growth, particularly against Streptococcus mutans, a principal dental caries pathogen. These advancements not only signify a leap forward in dental material science but also suggest a potential redefinition of dental restorative practices aimed at prolonging the lifespan of restorations and optimizing patient outcomes. Although this study lays a substantial foundation for the utilization of natural oils in the development of medical-grade materials, it also identifies the critical need for comprehensive cytotoxicity assays. Such evaluations are essential to thoroughly assess the biocompatibility and the safety profile of these innovative materials for clinical application. Future research will concentrate on this aspect, ensuring that the safety and efficacy of the materials align with clinical expectations for dental restorations.

5.
J Neural Eng ; 21(2)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38565124

RESUMO

Objective.Recent studies have shown that integrating inertial measurement unit (IMU) signals with surface electromyographic (sEMG) can greatly improve hand gesture recognition (HGR) performance in applications such as prosthetic control and rehabilitation training. However, current deep learning models for multimodal HGR encounter difficulties in invasive modal fusion, complex feature extraction from heterogeneous signals, and limited inter-subject model generalization. To address these challenges, this study aims to develop an end-to-end and inter-subject transferable model that utilizes non-invasively fused sEMG and acceleration (ACC) data.Approach.The proposed non-invasive modal fusion-transformer (NIMFT) model utilizes 1D-convolutional neural networks-based patch embedding for local information extraction and employs a multi-head cross-attention (MCA) mechanism to non-invasively integrate sEMG and ACC signals, stabilizing the variability induced by sEMG. The proposed architecture undergoes detailed ablation studies after hyperparameter tuning. Transfer learning is employed by fine-tuning a pre-trained model on new subject and a comparative analysis is performed between the fine-tuning and subject-specific model. Additionally, the performance of NIMFT is compared to state-of-the-art fusion models.Main results.The NIMFT model achieved recognition accuracies of 93.91%, 91.02%, and 95.56% on the three action sets in the Ninapro DB2 dataset. The proposed embedding method and MCA outperformed the traditional invasive modal fusion transformer by 2.01% (embedding) and 1.23% (fusion), respectively. In comparison to subject-specific models, the fine-tuning model exhibited the highest average accuracy improvement of 2.26%, achieving a final accuracy of 96.13%. Moreover, the NIMFT model demonstrated superiority in terms of accuracy, recall, precision, and F1-score compared to the latest modal fusion models with similar model scale.Significance.The NIMFT is a novel end-to-end HGR model, utilizes a non-invasive MCA mechanism to integrate long-range intermodal information effectively. Compared to recent modal fusion models, it demonstrates superior performance in inter-subject experiments and offers higher training efficiency and accuracy levels through transfer learning than subject-specific approaches.


Assuntos
Gestos , Reconhecimento Psicológico , Rememoração Mental , Fontes de Energia Elétrica , Redes Neurais de Computação , Eletromiografia
6.
J Exp Bot ; 75(10): 2917-2932, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38465908

RESUMO

Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) and AMP-activated protein kinase (AMPK) are highly conserved. Compound 991 is an AMPK activator in mammals. However, whether 991 also activates SnRK1 remains unknown. The addition of 991 significantly increased SnRK1 activity in desalted extracts from germinating rice seeds in vitro. To determine whether 991 has biological activity, rice seeds were treated with different concentrations of 991. Germination was promoted at low concentrations but inhibited at high concentrations. The effects of 991 on germination were similar to those of OsSnRK1a overexpression. To explore whether 991 affects germination by specifically affecting SnRK1, germination of an snrk1a mutant and the wild type under 1 µM 991 treatment was compared. The snrk1a mutant was insensitive to 991. Phosphoproteomic analysis showed that the differential phosphopeptides induced by 991 and OsSnRK1a overexpression largely overlapped. Furthermore, SnRK1 might regulate rice germination in a dosage-dependent manner by regulating the phosphorylation of three phosphosites, namely S285-PIP2;4, S1013-SOS1, and S110-ABI5. These results indicate that 991 is a specific SnRK1 activator in rice. The promotion and inhibition of germination by 991 also occurred in wheat seeds. Thus, 991 is useful for exploring SnRK1 function and the chemical regulation of growth and development in crops.


Assuntos
Germinação , Oryza , Proteínas Serina-Treonina Quinases , Sementes , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética
7.
Small ; : e2312086, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412409

RESUMO

Rechargeable aqueous aluminum batteries (AABs) are promising energy storage technologies owing to their high safety and ultra-high energy-to-price ratio. However, either the strong electrostatic forces between high-charge-density Al3+ and host lattice, or sluggish large carrier-ion diffusion toward the conventional inorganic cathodes generates inferior cycling stability and low rate-capacity. To overcome these inherent confinements, a series of promising redox-active organic materials (ROMs) are investigated and a π-conjugated structure ROMs with synergistic C═O and C═N groups is optimized as the new cathode in AABs. Benefiting from the joint utilization of multi-redox centers and rich π-π intermolecular interactions, the optimized ROMs with unique ion coordination storage mechanism facilely accommodate complex active ions with mitigated coulombic repulsion and robust lattice structure, which is further validated via theoretical simulations. Thus, the cathode achieves enhanced rate performance (153.9 mAh g-1 at 2.0 A g-1 ) and one of the best long-term stabilities (125.7 mAh g-1 after 4,000 cycles at 1.0 A g-1 ) in AABs. Via molecular exploitation, this work paves the new direction toward high-performance cathode materials in aqueous multivalent-ion battery systems.

9.
Adv Mater ; 35(51): e2301538, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37876329

RESUMO

The strong electrostatic interaction between high-charge-density zinc ions (112 C mm-3 ) and the fixed crystallinity of traditional oxide cathodes with delayed charge compensation hinders the development of high-performance aqueous zinc-ion batteries (AZIBs). Herein, to intrinsically promote electron transfer efficiency and improve lattice tolerance, a revolutionary family of high-entropy oxides (HEOs) materials with multipath electron transfer and remarkable structural stability as cathodes for AZIBs is proposed. Benefiting from the unique "cock-tail" effect, the interaction of diverse type metal-atoms in HEOs achieves essentially broadened d-band and lower degeneracy than monometallic oxides, which contribute to convenient electron transfer and one of the best rate-performances (136.2 mAh g-1 at 10.0 A g-1 ) in AZIBs. In addition, the intense lattice strain field of HEOs is highly tolerant to the electrostatic repulsion of high-charge-density Zn2+ , leading to the outstanding cycling stability in AZIBs. Moreover, the super selectability of elements in HEOs exhibits significant potential for AZIBs.

10.
BMC Genomics ; 24(1): 617, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848864

RESUMO

BACKGROUND: Oculomotor nerve palsy (ONP) is a neuroparalytic disorder resulting in dysfunction of innervating extraocular muscles (EOMs), of which the pathological characteristics remain underexplored. METHODS: In this study, medial rectus muscle tissue samples from four ONP patients and four constant exotropia (CXT) patients were collected for RNA sequencing. Differentially expressed circular RNAs (circRNAs) were identified and included in functional enrichment analysis, followed by interaction analysis with microRNAs and mRNAs as well as RNA binding proteins. Furthermore, RT-qPCR was used to validate the expression level of the differentially expressed circRNAs. RESULTS: A total of 84 differentially expressed circRNAs were identified from 10,504 predicted circRNAs. Functional enrichment analysis indicated that the differentially expressed circRNAs significantly correlated with skeletal muscle contraction. In addition, interaction analyses showed that up-regulated circRNA_03628 was significantly interacted with RNA binding protein AGO2 and EIF4A3 as well as microRNA hsa-miR-188-5p and hsa-miR-4529-5p. The up-regulation of circRNA_03628 was validated by RT-qPCR, followed by further elaboration of the expression, location and clinical significance of circRNA_03628 in EOMs of ONP. CONCLUSIONS: Our study may shed light on the role of differentially expressed circRNAs, especially circRNA_03628, in the pathological changes of EOMs in ONP.


Assuntos
MicroRNAs , RNA Circular , Humanos , RNA Circular/genética , Músculos Oculomotores/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima , Análise de Sequência de RNA , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
11.
Plant Physiol Biochem ; 203: 108048, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37757719

RESUMO

The redistribution of nonstructural carbohydrates (NSCs) in rice (Oryza sativa) sheaths contributes greatly to grain filling. Sucrose nonfermenting-1-related protein kinase 1 (SnRK1) regulates sheath-to-panicle transport of NSCs during rice grain filling; however, it is unknown whether elevated activity of SnRK1 in sheaths improves NSC transport and grain filling. Expression of OsSnRK1a is mainly responsible for regulating SnRK1 activity in rice sheaths. Analysis of transgenic rice plants containing the OsSnRK1a promoter::GUS construct indicated that OsSnRK1a is widely expressed in rice. Notably, OsSnRK1a is highly expressed in mesophyll cells of sheaths. Therefore, a green tissue promoter specifically expressed in sheaths and leaf parenchyma cells and phloem tissue was used to over-express OsSnRK1a in japonica rice. The transgenic lines exhibited increased SnRK1a expression and SnRK1 activity in sheaths. The NSC and starch in the transgenic lines and WT all showed accumulation before heading and during the early-filling stage, and declining at the peak filling stage. But the starch and NSC content in transgenic lines was lower than that of WT. Moreover, the transgenic lines showed lower sucrose contents and higher sucrose efflux rates. The accelerated sheath NSC transport improved grain filling, and stimulated panicle development in transgenic lines. SnRK1a expression and SnRK1 activity were also increased in the leaves of transgenic lines, which improved leaf photosynthetic activity and contributed to optimal grain filling and panicle development. These results verify the promotion of high SnRK1 activity in sheath NSC transport, and also provide a new approach to improving sheath NSC transport and rice yield.

12.
Adv Sci (Weinh) ; 10(32): e2303375, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37759400

RESUMO

Disuse osteoporosis is characterized by decreased bone mass caused by abnormal mechanical stimulation of bone. Piezo1 is a major mechanosensitive ion channel in bone homeostasis. However, whether intervening in the action of Piezo1 can rescue disuse osteoporosis remains unresolved. In this study, a commonly-used hindlimb-unloading model is employed to simulate microgravity. By single-cell RNA sequencing, bone marrow-derived mesenchymal stem cells (BMSCs) are the most downregulated cell cluster, and coincidentally, Piezo1 expression is mostly enriched in those cells, and is substantially downregulated by unloading. Importantly, activation of Piezo1 by systemically-introducing yoda1 mimics the effects of mechanical stimulation and thus ameliorates bone loss under simulated microgravity. Mechanistically, Piezo1 activation promotes the proliferation and osteogenic differentiation of Gli1+ BMSCs by activating the ß-catenin and its target gene activating transcription factor 4 (ATF4). Inhibiting ß-catenin expression substantially attenuates the effect of yoda1 on bone loss, possibly due to inhibited proliferation and osteogenic differentiation capability of Gli1+ BMSCs mediated by ATF4. Lastly, Piezo1 activation also slightly alleviates the osteoporosis of OVX and aged mice. In conclusion, impaired function of Piezo1 in BMSCs leads to insufficient bone formation especially caused by abnormal mechanical stimuli, and is thus a potential therapeutic target for osteoporosis.


Assuntos
Osteoporose , Ausência de Peso , Animais , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/farmacologia , beta Catenina/genética , Canais Iônicos/farmacologia , Canais Iônicos/uso terapêutico , Osteogênese , Osteoporose/etiologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologia , Proteína GLI1 em Dedos de Zinco/uso terapêutico
13.
ACS Nano ; 17(17): 17476-17488, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37606308

RESUMO

Rechargeable zinc-air batteries (ZABs) have been considered promising as next-generation sustainable energy storage devices; however, their large-scale deployment is hampered by the unsatisfactory cyclic lifespan. Employing neutral and mild-acidic electrolytes is effective in extending the cyclability, but the rapid performance degradation of the bifunctional catalysts owing to different microenvironmental requirements of the alternative oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is still a serious limitation of their cyclic life. Herein, we propose a "self-decoupling" strategy to significantly improve the stability of the bifunctional catalysts by constructing a smart interface in the bifunctional air electrode. This smart interface, containing a resistance-switchable sulfonic acid doped polyaniline nanoarray interlayer, is nonconductive at high potential but conductive at low potential, which enables spontaneous electrochemical decoupling of the bifunctional catalyst for the ORR and OER, respectively, and thus protects it from degradation. The resulting self-decoupled mild-acidic ZAB delivers stable cyclic performances in terms of a negligible energy efficiency loss of 0.015% cycle-1 and 3 times longer cycle life (∼1400 h) compared with the conventional mild-acidic ZAB using a normal bifunctional air electrode and the same low-cost ZnCo phosphide/nitrogen-doped carbon bifunctional catalyst. This work provides an effective strategy for tolerating alternative oxidation-reduction reactions and emphasizes the importance of smart nanostructure design for more sustainable batteries.

14.
Front Immunol ; 14: 1163739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025993

RESUMO

Aim: To investigate the molecular mechanism underlying the onset of choroidal neovascularization (CNV). Methods: Integrated transcriptomic and proteomic analyses of retinas in mice with laser-induced CNV were performed using RNA sequencing and tandem mass tag. In addition, the laser-treated mice received systemic interferon-ß (IFN-ß) therapy. Measurements of CNV lesions were acquired by the confocal analysis of stained choroidal flat mounts. The proportions of T helper 17 (Th17) cells were determined by flow cytometric analysis. Results: A total of differentially expressed 186 genes (120 up-regulated and 66 down-regulated) and 104 proteins (73 up-regulated and 31 down-regulated) were identified. The gene ontology and KEGG pathway analyses indicated that CNV was mainly associated with immune and inflammatory responses, such as cellular response to IFN-ß and Th17 cell differentiation. Moreover, the key nodes of the protein-protein interaction network mainly involved up-regulated proteins, including alpha A crystallin and fibroblast growth factor 2, and were verified by Western blotting. To confirm the changes in gene expression, real-time quantitative PCR was performed. Furthermore, levels of IFN-ß in both the retina and plasma, as measured by enzyme-linked immunosorbent assay (ELISA), were significantly lower in the CNV group than in the control group. IFN-ß treatment significantly reduced CNV lesion size and promoted the proliferation of Th17 cells in laser-treated mice. Conclusions: This study demonstrates that the occurrence of CNV might be associated with the dysfunction of immune and inflammatory processes and that IFN-ß could serve as a potential therapeutic target.


Assuntos
Neovascularização de Coroide , Interferon beta , Camundongos , Animais , Proteômica , Neovascularização de Coroide/tratamento farmacológico , Retina/patologia , Transdução de Sinais
15.
J Acoust Soc Am ; 153(1): 88, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36732244

RESUMO

The recently proposed semi-blind source separation (SBSS) method for nonlinear acoustic echo cancellation (NAEC) outperforms adaptive NAEC in attenuating the nonlinear acoustic echo. However, the multiplicative transfer function (MTF) approximation makes it unsuitable for real-time applications, especially in highly reverberant environments, and the natural gradient makes it hard to balance well between fast convergence speed and stability. In this paper, two more effective SBSS methods based on auxiliary-function-based independent vector analysis (AuxIVA) and independent low-rank matrix analysis (ILRMA) are proposed. The convolutive transfer function approximation is used instead of the MTF so that a long impulse response can be modeled with a short latency. The optimization schemes used in AuxIVA and ILRMA are carefully regularized according to the constrained demixing matrix of NAEC. The experimental results validate significantly better echo cancellation performances of the proposed methods.

16.
J Colloid Interface Sci ; 636: 245-254, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634394

RESUMO

Fiber-shaped supercapacitor (FSSC) is considered as a promising energy storage device for wearable electronics due to its high power density and outstanding safety. However, it is still a great challenge to simultaneously achieve high specific capacitance especially at rapid charging/discharging rate and long-term cycling stability of fiber electrode in FSSC for practical application. Here, a ternary poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/reduced graphene oxide/polypyrrole (PEDOT:PSS/rGO/PPy) fiber electrode was constructed by in situ chemical polymerization of pyrrole on hydrothermally-assembled and acid-treated PEDOT:PSS/rGO (PG) hybrid hydrogel fiber. In this case, the porous PG hybrid fiber framework possesses combined advantages of highly-conductive PEDOT and flexible two-dimensional (2D) small-sized rGO sheets, which provides large surface area for the deposition of high-pseudocapacitance PPy, multiscale electrons/ions transport channels for the efficient utilization of active sites, and buffering layers to accommodate the structure change during electrochemical process. Attributed to the synergy, as-obtained ternary fiber electrode presents ultrahigh volumetric/areal specific capacitance (389 F cm-3 at 1 A cm-3 or 983 mF cm-2 at 2.5 mA cm-2) and outstanding rate performance (56 %, 1-20 A cm-3). In addition, 80 % preservation of initial capacitance after 8000 cycles for the corresponding FSSC also illustrates its greatly improved cycle stability compared with 64 % of binary PEDOT:PSS/PPy based counterpart. Accordingly, here proposed strategy promises a new opportunity to develop high-activity and durable electrode materials with potential applications in supercapacitor and beyond.

17.
Sci Rep ; 13(1): 774, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641503

RESUMO

Treatment of COVID-19 with a soluble version of ACE2 that binds to SARS-CoV-2 virions before they enter host cells is a promising approach, however it needs to be optimized and adapted to emerging viral variants. The computational workflow presented here consists of molecular dynamics simulations for spike RBD-hACE2 binding affinity assessments of multiple spike RBD/hACE2 variants and a novel convolutional neural network architecture working on pairs of voxelized force-fields for efficient search-space reduction. We identified hACE2-Fc K31W and multi-mutation variants as high-affinity candidates, which we validated in vitro with virus neutralization assays. We evaluated binding affinities of these ACE2 variants with the RBDs of Omicron BA.3, Omicron BA.4/BA.5, and Omicron BA.2.75 in silico. In addition, candidates produced in Nicotiana benthamiana, an expression organism for potential large-scale production, showed a 4.6-fold reduction in half-maximal inhibitory concentration (IC50) compared with the same variant produced in CHO cells and an almost six-fold IC50 reduction compared with wild-type hACE2-Fc.


Assuntos
COVID-19 , Aprendizado Profundo , Animais , Cricetinae , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Cricetulus , Simulação de Dinâmica Molecular , Ligação Proteica
18.
Adv Mater ; 35(8): e2209628, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36480021

RESUMO

Due to the unique electronic structure of aluminum ions (Al3+ ) with strong Coulombic interaction and complex bonding situation (simultaneously covalent/ionic bonds), traditional electrodes, mismatching with the bonding orbital of Al3+ , usually exhibit slow kinetic process with inferior rechargeable aluminum batteries (RABs) performance. Herein, to break the confinement of the interaction mismatch between Al3+ and the electrode, a previously unexplored Se2.9 S5.1 -based cathode with sufficient valence electronic energy overlap with Al3+ and easily accessible structure is potentially developed. Through this new strategy, Se2.9 S5.1 encapsulated in multichannel carbon nanofibers with free-standing structure exhibits a high capacity of 606 mAh g-1 at 50 mA g-1 , high rate-capacity (211 mAh g-1 at 2.0 A g-1 ), robust stability (187 mAh g-1 at 0.5 A g-1 after 3,000 cycles), and enhanced flexibility. Simultaneously, in/ex-situ characterizations also reveal the unexplored mechanism of Sex Sy in RABs.

20.
ACS Nano ; 16(12): 21248-21258, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36480658

RESUMO

Fast charge separation and transfer (CST) is essential for achieving efficient solar conversion processes. This CST process requires not only a strong driving force but also a sufficient charge carrier concentration, which is not easily achievable with traditional methods. Herein, we report a rapid hydrogenation method enabled by gallium-based liquid metals (GBLMs) to modify the prototypical WO3 photoelectrode to enhance the CST for a PEC process. Protons in solution are controllably embedded into the WO3 photoanode accompanied by electron injection due to the strong reduction capability of GBLMs. This process dramatically increases the carrier concentration of the WO3 photoanode, leading to improved charge separation and transfer. The hydrogenated WO3 photoanode exhibits over a 229% improvement in photocurrent density with long-term stability. The effectiveness of GBLMs treatment in accelerating the CST process is further proved using other more general semiconductor photoelectrodes, including Nb2O5 and TiO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA