Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959497

RESUMO

Dissecting the photochemical reactivity of metal ions is a significant contribution to understanding secondary pollutant formation, as they have a role to be reckoned with atmospheric chemistry. However, their photochemical reactivity has received limited attention within the active nitrogen cycle, particularly at the gas-solid interface. In this study, we delve into the contribution of magnesium ion (Mg2+) and ferric ion (Fe3+) to nitrate decomposition on the surface of photoactive mineral dust. Under simulated sunlight irradiation, the observed NOX production rate differs by an order of magnitude in the presence of Mg2+ (6.02 × 10-10 mol s-1) and Fe3+ (2.07 × 10-11 mol s-1). The markedly decreased fluorescence lifetime induced by Mg2+ and the change in the valence of Fe3+ revealed that Mg2+ and Fe3+ significantly affect the concentration of nitrate decomposition products by distinct photochemical reactivity with photogenerated electrons. Mg2+ promotes NOX production by accelerating charge transfer, while Fe3+ hinders nitrate decomposition by engaging in a redox cyclic reaction with Fe2+ to consume photogenerated carriers continuously. Furthermore, when Fe3+ coexists with other metal ions (e.g., Mg2+, Ca2+, Na+, and K+) and surpasses a proportion of approximately 12%, the photochemical reactivity of Fe3+ tends to be dominant in depleting photogenerated electrons and suppressing nitrate decomposition. Conversely, below this threshold, the released NOX concentration increases sharply as the proportion of Fe3+ decreases. This research offers valuable insights into the role of metal ions in nitrate transformation and the generation of reactive nitrogen species, contributing to a deep understanding of atmospheric photochemical reactions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38906043

RESUMO

The intestine is an important organ for food digestion and absorption and body immunity in fish. In this study, we investigated the abundance of transcripts from different segments of the intestinal tract using transcriptome sequencing technology in Hemibarbus labeo, to provide functional insights into digestion, absorption, and immunity in the anterior intestine (AI), middle intestine (MI), and posterior intestine (PI). We found 5646 differentially expressed genes (DEGs), which were significantly enriched to GO terms of carbohydrate metabolic process, transmembrane transport, iron ion binding, lipid metabolic process, and KEGG pathway of fat digestion and absorption, mineral absorption, protein digestion and absorption, vitamin digestion and absorption, indicating that the digestion and absorption function of food is different in AI, MI, and PI. In practice, most genes, enriched in the KEGG pathway for digestion and absorption of nutrients, are upregulated in AI and MI, indicating stronger roles for food digestion and absorption in these segments. Furthermore, we found that genes involved in the KEGG pathway of lysosome and endocytosis pathway are upregulated in PI, suggesting stronger antigen-presenting capabilities in PI. However, some cytokine receptor genes, including ccr4, cxcr2, tnfrsf9, il6r, csf3r, and cxcr4, are highly expressed in AI, reflecting the regional immune specialization in different segments. This study provides functional insights into digestion, absorption, and immunity in different segments of the intestine and supports the regional functional specialization within different segments of the intestine in H. labeo.

3.
J Control Release ; 372: 265-280, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38906418

RESUMO

To build a smart system in response to the variable microenvironment in infected diabetic wounds, a multifunctional wound dressing was constructed by co-incorporating glucose oxidase (GOx) and a pH-responsive self-assembly Cu2-xSe-BSA nanozyme into a dual-dynamic bond cross-linked hydrogel (OBG). This composite hydrogel (OBG@CG) can adhere to the wound site and respond to the acidic inflammatory environment, initiating the GOx-catalyzed generation of H2O2 and the self-assembly activated peroxidase-like property of Cu2-xSe-BSA nanozymes, resulting in significant hydroxyl radical production to attack the biofilm during the acute infection period and alleviate the high-glucose microenvironment for better wound healing. During the wound recovery phase, Cu2-xSe-BSA aggregates disassembled owing to the elevated pH, terminating catalytic reactive oxygen species generation. Simultaneously, Cu2+ released from the Cu2-xSe-BSA not only promotes the production of mature collagen but also enhances the migration and proliferation of endothelial cells. RNA-seq analysis demonstrated that OBG@CG exerted its antibacterial property by damaging the integrity of the biofilm by inducing radicals and interfering with the energy supply, along with destroying the defense system by disturbing thiol metabolism and reducing transporter activities. This work proposes an innovative glucose consumption strategy for infected diabetic wound management, which may inspire new ideas in the exploration of smart wound dressing.

4.
Mar Biotechnol (NY) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913221

RESUMO

Naturally, the ovaries of many farmed fish can only develop to stage IV (mainly including stage IV oocytes, known as full-grown postvitellogenic oocytes). Therefore, spawn-inducing hormone injections are used to promote ovary development and oocyte maturation, facilitating reproduction in the aquaculture industry. The study of spawn-inducing hormones and their underlying neuroendocrine mechanisms has been a recent focus in fish reproductive biology. However, the intra-ovarian regulatory mechanisms of ovary development and oocyte maturation after hormone injection require further investigation. In this study, we explored the histological and transcriptomic map of the ovary of Hemibarbus labeo after hormone injection to reveal changes in the ovary. The gonad index significantly increased after hormone injection for 5.5 h, after which no significant change was observed. Histological analysis showed that the nuclei had moved to one side of the oocytes at 5.5 h after hormone injection. Moreover, the volume of the oocytes increased and their yolk membranes thickened. Oocytes then underwent their first meiotic division at 5.5-11 h after hormone injection. Subsequently, the follicular membrane was ruptured, and ovulation was completed at 11-16.5 h after hormone injection. In addition, we identified 3189 differentially expressed genes (DEGs) on comparing the transcriptomes at different time points after hormone injection. These DEGs were significantly enriched in the GO terms of nervous system process, molecular transducer activity, and extracellular region, and the KEGG pathways of TNF signaling and cytokine-cytokine receptor interaction; these may play important roles in ovary development and oocyte maturation. Within these pathways, genes such as apoe, creb3, jun, junb, il11, and il8 may play important roles in steroid hormone synthesis and ovulation. Conclusively, our results show detailed sequential dynamics of oocyte development and provide new insights into the intra-ovarian regulatory mechanisms of ovarian development and oocyte maturation in H. labeo. These findings may be important for research on improving egg quality and reproduction in aquaculture.

5.
Plant Sci ; 340: 111965, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142750

RESUMO

Drought stress is increasing worldwide due to global warming, which severely reduces apple (Malus domestica) yield. Clarifying the basis of drought tolerance in apple could accelerate the molecular breeding of drought-tolerant cultivars to maintain apple production. We identified a transcription factor MdWRKY50 by yeast two-hybrid (Y2H) assays as an interactor of the drought-tolerant protein MdWRKY17, and confirmed their interaction by bimolecular fluorescence complementation (BiFC) and pull-down assays. MdWRKY50 was induced by drought and when overexpressed in apple, conferred transgenic apple plants enhanced drought tolerance by directly binding to the promoter of anthocyanin synthetic gene Chalcone synthase (MdCHS) to upregulate its expression for higher anthocyanin. Increased anthocyanin relieves apple plants from oxidative damage under drought stress. MdWRKY50 RNA-interference transgenic apple plants showed opposite phenotypes. The dimerization of MdWRKY50 with mutated MdWRKY17DP mimicking drought-induced phosphorylation by the mitogen-activated protein kinase kinase 2 (MEK2)-MPK6 cascade, compared with MdWRKY17AP and MdWRKY17, further promoted anthocyanin biosynthesis, suggesting dimerization with MdWRKY17 makes MdWRKY50 more powerful in promoting anthocyanin biosynthesis under drought stress. Taken together, we isolated an entire MEK2-MAPK6-MdWRKY17-MdWRKY50-MdCHS pathway for drought tolerance and generated transgenic apple germplasm with enhanced drought tolerance and higher anthocyanin levels.


Assuntos
Malus , Malus/metabolismo , Antocianinas/metabolismo , Resistência à Seca , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
6.
J Pineal Res ; 75(1): e12891, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37282752

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is a potent reactive oxygen species (ROS) scavenger that increases the biotic and abiotic stress tolerance in plants. The signaling and regulation pathways of melatonin in plants remain elusive. Here, we report that transgenic apple (Malus domestica) plants overexpressing the transcription factor gene, MdWRKY17, have higher melatonin contents and lower ROS levels than those of control, while the MdWRKY17 RNA interference (RNAi) lines show the reversed phenotype. The binding of MdWRKY17 to N-acetylserotonin O-methyltransferase7 (MdASMT7) directly promotes the MdASMT7 expression in the in vitro and in vivo. MdASMT7 is a melatonin synthase that localizes to the plasma membrane. MdASMT7 overexpression rescued the lower melatonin contents of MdWRKY17-RNAi lines, confirming the role of MdWRKY17-MdASMT7 module in melatonin biosynthesis in apple. Furthermore, melatonin treatment activated the mitogen-activated kinases (MPKs) MdMPK3 and MdMPK6, which phosphorylate MdWRKY17 to promote transcriptional activation of MdASMT7. RNAi-mediated silencing of MdMPK3/6 decreases MdASMT7 expression in transgenic apple plants overexpressing MdWRKY17, which further confirms MdMPK3/6 fine-tunes MdWRKY17-mediated MdASMT7 transcription. This also forms a positive loop that melatonin activates MdMPK3/6 and thus accelerates the biosynthesis of itself via triggering MdMPK3/6-MdWRKY17-MdASMT7 pathway. This novel melatonin regulatory pathway not only have dissected the molecular mechanisms of melatonin biosynthesis but also provided an alternative approach for generating transgenic melatonin-rich apples which may benefits to human health.


Assuntos
Malus , Melatonina , Humanos , Melatonina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico , Malus/genética , Malus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Adv Sci (Weinh) ; 10(17): e2206306, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078785

RESUMO

Chronic inflammatory diseases, such as intervertebral disc degeneration (IVDD), which affect the lives of hundreds of millions of people, still lack effective and precise treatments. In this study, a novel hydrogel system with many extraordinary properties is developed for gene-cell combination therapy of IVDD. Phenylboronic acid-modified G5 PAMAM (G5-PBA) is first synthesized, and therapeutic siRNA silencing the expression of P65 mixed with G5-PBA (siRNA@G5-PBA) is then embedded into the hydrogel (siRNA@G5-PBA@Gel) based on multi-dynamic bonds including acyl hydrazone bonds, imine linkage, π-π stacking, and hydrogen bonding interactions. Local and acidic inflammatory microenvironment-responsive gene-drug release can achieve spatiotemporal regulation of gene expression. In addition, gene-drug release from the hydrogel can be sustained for more than 28 days in vitro and in vivo, greatly inhibiting the secretion of inflammatory factors and the subsequent degeneration of nucleus pulposus (NP) cells induced by lipopolysaccharide (LPS). Through prolonged inhibition of the P65/NLRP3 signaling pathway, the siRNA@G5-PBA@Gel is verified to relieve inflammatory storms, which can significantly enhance the regeneration of IVD when combined with cell therapy. Overall, this study proposes an innovative system for gene-cell combination therapy and a precise and minimally invasive treatment method for IVD regeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/terapia , Hidrogéis/química , Disco Intervertebral/metabolismo , RNA Interferente Pequeno/metabolismo , Terapia Baseada em Transplante de Células e Tecidos
8.
Molecules ; 28(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770835

RESUMO

The prevalence of Alzheimer's disease (AD) is significantly increasing due to the aging world population, and the currently available drug treatments cannot cure or even slow its progression. α-lipoic acid (LA) is a biological factor widely found in spinach and meat and can dissolve in both lipid and aqueous phases. In medicine, LA has been shown to reduce the symptoms of diabetic polyneuropathy, acute kidney injury, cancers, and some metabolism-related diseases. This study to proves that α-lipoic acid (LA) can stabilize the cognitive function of patients with Alzheimer's disease (AD). BV2 cells were divided into control, LA, Aß25-35, and LA + Aß25-35 groups. Cell growth; IL-6, IL-1ß, TNF-α, IFN-γ, SOD, GPx, CAT, ROS, NO, and iNOS secretion; Wnt-related proteins; cell apoptosis; and cell activation were examined. Here, we found that LA could effectively repress apoptosis and changes in the morphology of microglia BV2 cells activated by Aß25-35, accompanied by the inhibition of the inflammatory response induced by Aß25-35. The Wnt/ß-catenin pathway is also involved in preventing Aß25-35-induced cytotoxicity in microglia by LA. We found an inhibitory effect of LA on microglia toxicity induced by Aß25-35, suggesting that a combination of anti-inflammatory and antioxidant substances may offer a promising approach to the treatment of AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ácido Tióctico , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Ácido Tióctico/farmacologia , Ácido Tióctico/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Microglia , Fragmentos de Peptídeos/metabolismo
9.
Acta Histochem ; 125(2): 152000, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36696877

RESUMO

Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic suborganelle membranes that physically couple endoplasmic reticulum (ER) and mitochondria to provide a platform for exchange of intracellular molecules and crosstalk between the two organelles. Dysfunctions of mitochondria and ER and imbalance of intracellular homeostasis have been discovered in the research of toxics. Cellular activities such as oxidative stress, ER stress, Ca2+ transport, autophagy, mitochondrial fusion and fission, and apoptosis mediated by MAMs are closely related to the toxicological effects of various toxicants. These cellular activities mediated by MAMs crosstalk with each other. Regulating the structure and function of MAMs can alleviate the damage caused by toxicants to some extent. In this review, we discuss the relationships between MAMs and the mechanisms of toxicological effects, and highlight MAMs as a potential target for protection against toxicants.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Membranas Mitocondriais/metabolismo , Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Apoptose
10.
PeerJ ; 10: e13008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35382008

RESUMO

Dwarfing is a typic breeding trait for mechanical strengthening and relatively high yield in modern apple orchards. Clarification of the mechanisms associated with dwarfing is important for use of molecular technology to breed apple. Herein, we identified four dwarfing apple germplasms in semi-arid area of Xinjiang, China. The internodal distance of these four germplasms were significantly shorter than non-dwarfing control. Their high melatonin (MT) contents are negatively associated with their malondialdehyde (MDA) levels and oxidative damage. In addition, among the detected hormones including auxin (IAA), gibberellin (GA), brassinolide (BR), zeatin-riboside (ZR), and abscisic acid (ABA), only ABA and ZR levels were in good correlation with the dwarfing phenotype. The qPCR results showed that the expression of melatonin synthetic enzyme genes MdASMT1 and MdSNAT5, ABA synthetic enzyme gene MdAAO3 and degradative gene MdCYP707A, ZR synthetic enzyme gene MdIPT5 all correlated well with the enhanced levels of MT, ABA and the reduced level of of ZR in the dwarfing germplasms. Furthermore, the significantly higher expression of ABA marker genes (MdRD22 and MdRD29) and the lower expression of ZR marker genes (MdRR1 and MdRR2) in all the four dwarf germplasms were consistent with the ABA and ZR levels. Considering the yearly long-term drought occurring in Xinjiang, China, it seems that dwarfing with high contents of MT and ABA may be a good strategy for these germplasms to survive against drought stress. This trait of dwarfing may also benefit apple production and breeding in this semi-arid area.


Assuntos
Malus , Melatonina , Ácido Abscísico/metabolismo , Malus/genética , Melhoramento Vegetal , Giberelinas/metabolismo
11.
Plant J ; 108(3): 814-828, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34469599

RESUMO

Drought stress severely limits plant growth and production in apple (Malus domestica Borkh.). To breed water-deficit-tolerant apple cultivars that maintain high yields under slight or moderate drought stress, it is important to uncover the mechanisms underlying the transcriptional regulation of chlorophyll metabolism in apple. To explore this mechanism, we generated transgenic 'Gala3' apple plants with overexpression or knockdown of MdWRKY17, which encodes a transcription factor whose expression is significantly induced by water deficit. Under moderate drought stress, we observed significantly higher chlorophyll contents and photosynthesis rates in overexpression transgenic plants than in controls, whereas these were dramatically lower in the knockdown lines. MdWRKY17 directly regulates MdSUFB expression, as demonstrated by in vitro and in vivo experiments. MdSUFB, a key component of the sulfur mobilization (SUF) system that assembles Fe-S clusters, is essential for inhibiting chlorophyll degradation and stabilizing electron transport during photosynthesis, leading to higher chlorophyll levels in transgenic apple plants overexpressing MdWRKY17. The activated MdMEK2-MdMPK6 cascade by water-deficit stress fine-tunes the MdWRKY17-MdSUFB pathway by phosphorylating MdWRKY17 under water-deficit stress. This fine-tuning of the MdWRKY17-MdSUFB regulatory pathway is important for balancing plant survival and yield losses (chlorophyll degradation and reduced photosynthesis) under slight or moderate drought stress. The phosphorylation by MdMEK2-MdMPK6 activates the MdWRKY17-MdSUFB pathway at S66 (identified by LC-MS), as demonstrated by in vitro and in vivo experiments. Our findings reveal that the MdMEK2-MdMPK6-MdWRKY17-MdSUFB pathway stabilizes chlorophyll levels under moderate drought stress, which could facilitate the breeding of apple varieties that maintain high yields under drought stress.


Assuntos
Clorofila/metabolismo , MAP Quinase Quinase 2/metabolismo , Malus/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/metabolismo , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase 2/genética , Redes e Vias Metabólicas , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Fotossíntese/fisiologia , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Plant Physiol ; 186(2): 1202-1219, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33693824

RESUMO

Glomerella leaf spot (GLS), a fungal disease caused by Colletotrichum fructicola, severely affects apple quality and yield, yet few resistance genes have been identified in apple (Malus domestica Borkh.). Here we found a transcription factor MdWRKY17 significantly induced by C. fructicola infection in the susceptible apple cultivar "Gala." MdWRKY17 overexpressing transgenic "Gala" plants exhibited increased susceptibility to C. fructicola, whereas MdWRKY17 RNA-interference plants showed opposite phenotypes, indicating MdWRKY17 acts as a plant susceptibility factor during C. fructicola infection. Furthermore, MdWRKY17 directly bound to the promoter of the salicylic acid (SA) degradation gene Downy Mildew Resistant 6 (MdDMR6) and promoted its expression, resulting in reduced resistance to C. fructicola. Additionally, Mitogen-activated protein kinase (MAPK) 3 (MdMPK3) directly interacted with and phosphorylated MdWRKY17. Importantly, predicted phosphorylation residues in MdWRKY17 by MAPK kinase 4 (MdMEK4)-MdMPK3 were critical for the activity of MdWRKY17 to regulate MdDMR6 expression. In the six susceptible germplasms, MdWRKY17 levels were significantly higher than the six tolerant germplasms after infection, which corresponded with lower SA content, confirming the critical role of MdWRKY17-mediated SA degradation in GLS tolerance. Our study reveals a rapid regulatory mechanism of MdWRKY17, which is essential for SA degradation and GLS susceptibility, paving the way to generate GLS resistant apple.


Assuntos
Colletotrichum/fisiologia , Malus/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Suscetibilidade a Doenças , Malus/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Mitochondrial DNA B Resour ; 5(1): 525-527, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33366631

RESUMO

The blackspotted croaker (Nibea diacanthus) is an important food fish of Indo-West Pacific and China. To study the phylogenetic status, we sequenced the complete mitochondrial genome of N. diacanthus. The mitogenome is 16,532 bp in length and composed of 13 protein-coding genes, two rRNAs, 22 tRNAs, and a control region. The gene composition and the structural arrangement of N. diacanthus complete mtDNA were identical to most of other vertebrates. The phylogenetic analysis using the complete mitochondrial genome revealed that the N. diacanthus might be separated from Nibea genera of Argyrosominae, which was inconsistent with that based on morphology. The complete mitogenome data would be useful for the evolution and conservation genetic studies of Sciaenidae.

14.
Hortic Res ; 7: 105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637133

RESUMO

Overuse of fungicides and fertilizers has resulted in copper (Cu) contamination of soils and toxic levels of Cu in apple fruits. To breed Cu-resistant apple (Malus domestica) cultivars, the underlying molecular mechanisms and key genes involved in Cu resistance must be identified. Here, we show that MdWRKY11 increases Cu tolerance by directly promoting the transcription of MdHMA5. MdHMA5 is a Cu transporter that may function in the storage of excess Cu in root cell walls and stems for Cu tolerance in apple. The transcription factor MdWRKY11 is highly induced by excess Cu. MdWRKY11 overexpression in transgenic apple enhanced Cu tolerance and decreased Cu accumulation. Apple calli transformed with an MdWRKY11-RNAi construct exhibited the opposite phenotype. Both an in vivo chromatin immunoprecipitation assay and an in vitro electrophoretic mobility shift assay indicated that MdWRKY11 binds to the promoter of MdHMA5. Furthermore, MdWRKY11 promoted MdHMA5 expression in transgenic apple plants, as revealed by quantitative PCR. Moreover, inhibition of MdWRKY11 expression by RNA interference led to a significant decrease in MdHMA5 transcription. Thus, MdWRKY11 directly regulates MdHMA5 transcription. Our work resulted in the identification of a novel MdWRKY11-MdHMA5 pathway that mediates Cu resistance in apple.

15.
Environ Sci Pollut Res Int ; 27(23): 29228-29238, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32436088

RESUMO

Artificial top-to-bottom water transmitting channels made of threads of wool blend (WT), cotton (CT), flax (FT), and polyethylene (PET) were used to enhance the dewater efficiency for river sediment. In addition, the disordered channels composed of 3-mm-long WT segments mixed randomly into the river sediment were also employed. The most effective dewatering channels were found to be top-to-bottom WT channels with water absorption capacity of 8.7 ± 0.5 g · g-1 and volume compressibility of 2.94 ± 0.11. On the application of 0.1 MPa pressure to the mud surface, with initial water content of 60.0 ± 0.2 wt%, the water content obtained with channel material weight 0.411 wt% dry solids and channel to a mud cake height ratio of 0.95 upon 90-min dewatering was 39.6 ± 0.7 wt% with enhanced dewaterability, compared to that without channel addition, of 74.9 ± 0.9 kg · kg-1 · h-1. Using the same parameters, enhanced dewaterability was only 69.1 ± 0.3, 55.2 ± 2.8, and 9.1 ± 0.9 kg · kg-1 · h-1 for CT, FT, and PET channels, respectively. Moreover, the final water content of the mud cake dewatered in the presence of disordered WT channels at dosage 1.10 wt% was 49.8 ± 0.7 wt% with enhanced dewaterability of 5.9 ± 0.5 kg · kg-1 · h-1 only. These demonstrate that the compressibility of the water transmitting material is the main factor affecting dewatering efficiency with the water absorption capacity also being important.


Assuntos
Aquaporinas , Esgotos , Rios , Eliminação de Resíduos Líquidos , Água
16.
Fish Shellfish Immunol ; 87: 184-192, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30641185

RESUMO

The liver-expressed antimicrobial peptide 2 (LEAP-2) plays a vital role in host immunity against pathogenic organisms. In the present study, cDNA of the LEAP-2 gene was cloned and sequenced from the barbel steed (Hemibarbus labeo). The predicted amino acid sequence of the barbel steed LEAP-2 comprises a signal peptide and a prodomain, which is followed by the mature peptide. Sequence analysis revealed that barbel steed LEAP-2 belongs to the fish LEAP-2A cluster and that it is closely related to zebrafish LEAP-2A. We found that barbel steed LEAP-2 transcripts were expressed in a wide range of tissues, with the highest mRNA levels detected in the liver. In response to lipopolysaccharide (LPS) treatment, LEAP-2 was significantly upregulated in the liver, head kidney, spleen, gill, and mid intestine. A chemically synthesized LEAP-2 mature peptide exhibited selective antimicrobial activity against several bacteria in vitro. Moreover, LEAP-2, alone or in combination with LPS or phorbol 12-myristate 13-acetate, strongly induced a pro-inflammatory reaction in barbel steed monocytes/macrophages (MO/MФ), involving the induction of iNOS activity, respiratory burst, and the pro-inflammatory cytokines IFN-γ, TNF-α, and IL-1ß. Collectively, the results of this study indicate the importance of fish LEAP-2 in the M1-type polarization of MO/MΦ.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Hepcidinas/genética , Hepcidinas/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Bactérias/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Hepcidinas/química , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Monócitos/metabolismo , Filogenia , Alinhamento de Sequência/veterinária
17.
Fish Shellfish Immunol ; 83: 45-51, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30195905

RESUMO

Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in host immunity against pathogenic organisms. Most fish hepcidins exert bactericidal activities against a wide range of pathogens. In this study, we identified a cDNA sequence encoding a hepcidin homologue (PsHepcidin) in the starry flounder Platichthys stellatus. The predicted amino acid sequence of PsHepcidin comprises a signal peptide and a prodomain, which are followed by the mature peptide. Sequence analysis revealed that PsHepcidin belongs to the fish HAMP2 cluster and that it is closely related to mudskipper hepcidin-2. Expression of PsHepcidin mRNA was detected in all examined immune-related tissues, with the highest transcript levels being found in the liver. In response to lipopolysaccharide treatment, PsHepcidin was significantly up-regulated in the liver, kidney, and spleen in a time-dependent manner. Chemically synthesized mature peptides of PsHepcidin were found to exhibit broad antimicrobial activity in vitro. We also investigated the combined effect of PsHepcidin and conventional antibiotics and found that these combinations showed synergistic effects against most of the examined bacterial strains. Collectively, the results of this study indicate that PsHepcidin exhibits potent antibacterial activity both independently and when used in combination with conventional antibiotics.


Assuntos
Antibacterianos/farmacologia , Linguado/genética , Linguado/imunologia , Hepcidinas/genética , Animais , Bactérias/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Sinergismo Farmacológico , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Linguado/microbiologia , Regulação da Expressão Gênica , Lipopolissacarídeos , Filogenia , RNA Mensageiro , Alinhamento de Sequência , Homologia Estrutural de Proteína
18.
Artigo em Inglês | MEDLINE | ID: mdl-26680686

RESUMO

The golden drum (Chrysochir aurenus) is an important food fish of Indo-West Pacific and China. To study the phylogenetic status, we sequenced the complete mitochondrial genome of C. aurenus. The mitogenome is 16 505 bp in length and composed of 13 protein-coding genes, 2 rRNAs, 22 tRNAs, and a control region. The gene composition and the structural arrangement of C. aurenus complete mtDNA were identical to most of other vertebrates. The phylogenetic analysis using the complete mitochondrial genome revealed that the C. aurenus might be grouped in different genera of Argyrosominae, but not belonged to Otolithinae, which was highly consistent with that based on the morphology. The present study will be helpful for the evolution and conservation genetic studies of C. aurenus.


Assuntos
Genoma Mitocondrial , Perciformes/genética , Animais , Composição de Bases , Códon de Iniciação , Códon de Terminação , DNA Mitocondrial/química , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fases de Leitura Aberta/genética , Perciformes/classificação , Filogenia , RNA Ribossômico/química , RNA Ribossômico/genética , RNA de Transferência/química , RNA de Transferência/genética , Análise de Sequência de DNA
19.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2658-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27158787

RESUMO

The Pseudogastromyzon jiulongjiangensis Chen (Cypriniformes, Homalopteridae) is a promising ornamental and commercial candidate in China. In this study, the complete mitochondrial genome of P. jiulongjiangensis was first determined. It is 16,571 bp length and consists of 22 tRNA genes, 13 protein-coding genes, two rRNA genes, and a control region. Except for eight tRNA and ND6 genes, all other mitochondrial genes are encoded on the heavy strand. Phylogenetic analysis revealed that P. jiulongjiangensis, Formosania lacustris, and other seven fish first clustered into the Homalopteridae clade. Then, the Homalopteridae and Cobitidae formed the sister group. The Catostomoidae and Cyprinidae constituted the sister branch, which is inconsistent with the previous phenotypic report. It is suggested that the taxonomic research might lose some significant evolutionary characters. This study will contribute to phylogenetic analysis of the Homalopteridae and the natural resources conservation of P. jiulongjiangensis.


Assuntos
Cipriniformes/genética , Genoma Mitocondrial/genética , Animais , Cipriniformes/classificação , DNA Mitocondrial/genética , Genes Mitocondriais/genética , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética , Análise de Sequência de DNA
20.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3633-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26369837

RESUMO

The giant croaker Nibea japonica (Perciformes, Sciaenidae) is an important economic fish distributing in the East China Sea, South China Sea, and Japan southern coast. In this study, the complete mitochondrial genome of N. japonica was firstly determined. It is 16 496 bp-length and consists of 22 tRNA genes, 13 protein-coding genes, two rRNA genes, and a control region. Except for eight tRNA and ND6 genes, all other mitochondrial genes are encoded on the heavy strand. Phylogenetic analysis revealed that N. japonica, A. amoyensis, and other seven fish first clustered into the Argyrosominae clade. It is consistent with the taxonomic status. Then, the Argyrosominae, Pseudosciaeninae, and Sciaeniae formed the sister group, while the Johniinae became a separate clade, which is inconsistent with the previous phenotypic report. It is suggested that the researches of single gene and taxionomic might lose some significant evolutionary characters. This study will contribute to phyogenetic analysis of the Sciaenidae and the natural resources conservation.


Assuntos
Genoma Mitocondrial , Perciformes/genética , Animais , DNA Mitocondrial/genética , Proteínas de Peixes/genética , Genes de RNAr , Região de Controle de Locus Gênico , Fases de Leitura Aberta/genética , Perciformes/classificação , Filogenia , RNA de Transferência/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA