Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 372: 114616, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38007208

RESUMO

Corticotrophin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) play a critical role in the modulation of the hypothalamic-pituitary-adrenal (HPA) axis. Early-life exposure to di-(2-ethylhexyl) phthalate (DEHP) has been associated with an increased risk of developing psychiatric disorders in adulthood. The present work was designed to explore the impact of neonatal exposure to DEHP on adult PVN CRH neuronal activity. DEHP or vehicle was given to male rat pups from PND16 to PND22. Then, anxiety-like behaviors, serum corticosterone and testosterone, immunohistochemistry, western blotting, fluorescence in situ hybridization and acute ex vivo slice electrophysiological recordings were used to evaluate the influence of DEHP on adult PVN secretory CRH neurons. Neonatal DEHP-exposed rats exhibited enhanced anxiety-like behaviors in adults, with an increase in CORT. Secretory CRH neurons showed higher spontaneous firing activity but could be inhibited by GABAAR blockers. CRH neurons displayed fewer firing spikes, prolonged first-spike latency, depolarizing shifts in GABA reversal potential and strengthened GABAergic inputs, as indicated by increases in the frequency and amplitude of sIPSCs. Enhancement of GABAergic transmission was accompanied by upregulated expression of GAD67 and downregulated expression of GABABR1, KCC2 and GAT1. These findings suggest that neonatal exposure to DEHP permanently altered the characteristics of secretory CRH neurons in the PVN, which may contribute to the development of psychiatric disorders later in life.


Assuntos
Hormônio Liberador da Corticotropina , Dietilexilftalato , Humanos , Ratos , Masculino , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hibridização in Situ Fluorescente , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Hipotálamo , Núcleo Hipotalâmico Paraventricular , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Corticosterona
2.
Chem Commun (Camb) ; 59(89): 13344-13347, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37872818

RESUMO

The oxidation process is widely explored and used to synthesize diverse organic chemicals. Herein, a unified metal-free photooxidative platform for the cleavage of C-heteroatom bonds has been developed. In these reactions, the aminoquinolate diarylboron (AQDAB) complex is utilized as the photocatalyst, instigating the oxidation process induced by visible light. The cleavage of C-heteroatom bonds can be achieved chemoselectively, affording the formal carbonylation product of C-N, C-S, and C-Se bonds. This method provides a channel for connecting amines, thiols, or selenides with the carbonyl compounds directly, broadening the potential applications of oxidation as a synthetic tool.

3.
Br J Anaesth ; 131(5): 914-920, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739904

RESUMO

BACKGROUND: The pharmacokinetic properties of the new benzodiazepine remimazolam have been studied only in adults. We investigated the pharmacokinetics of remimazolam after i.v. infusion in anaesthetised paediatric patients. METHODS: Twenty-four children (2-6 yr, ASA physical status 1-2, BMI 15-18 kg m-2) undergoing general anaesthesia with sevoflurane were enrolled. During surgery, remimazolam was administered as an i.v. infusion over 1 h at 5 mg kg-1 h-1 for 5 min, followed by 1.5 mg kg-1 h-1 for 55 min. Plasma concentrations of remimazolam and its metabolite CNS7054 were determined from arterial blood samples using ultra-high performance liquid chromatography-mass spectrometry. Pharmacokinetic modelling was performed by population analysis. RESULTS: Pharmacokinetics were best described by a three-compartment model for remimazolam and a two-compartment model for CNS7054 linked by a transit compartment. Remimazolam showed a high clearance of 15.9 (12.9, 18.2) ml kg-1 min-1 (median, Q25, Q75), a small central volume of distribution of 0.11 (0.08, 0.14) L kg-1 and a short terminal half-life of 67 (49, 85) min. The context-sensitive half-time after an infusion of 4 h was 17 (12, 21) min. The metabolite CNS7054 showed a low clearance of 0.89 (0.33, 1.40) ml kg-1 min-1, a small central volume of distribution of 0.011 (0.005, 0.016) L kg-1, and a long terminal half-life of 321 (230, 770) min. CONCLUSIONS: Remimazolam in children was characterised by a high clearance and short context-sensitive half-time. When normalised to weight, pharmacokinetic properties were similar to those reported for adults. CLINICAL TRIAL REGISTRATION: ChiCTR2200057629.


Assuntos
Anestesia Geral , Benzodiazepinas , Adulto , Criança , Humanos , Infusões Intravenosas , Cinética
4.
J Colloid Interface Sci ; 644: 466-477, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37137213

RESUMO

An effective method was proposed for constructing carbon dots (CDs)-sensitized multijunction composite photoelectrodes via one-step cladding a CDs-embedded ZnO amorphous overlayer on vertically aligned metal oxide nanowires. This strategy involved the double role of hexamethylenetetramine (HMTA) in the ethylene glycol (EG) solvent mixed with a controllable trace amount of water. In the water-deficient synthetic system, a limited portion of HMTA served as the pH buffer and hydroxyl source to force the hydrolytic process of zinc ions for the production of ZnO. The precipitated ZnO clusters were instantly capped by EG molecules through the activated alkoxidation reaction, and further crosslinked into an amorphous network surrounding the individual nanowires. Meanwhile, the excess HMTA was simultaneously depleted as the precursor for producing CDs in the EG solution through thermal condensation, which were packed in the gradually formed aggregates. We revealed that a CDs-embedded amorphous ZnO overlayer with an appropriate proportion of ingredient could be tailored through an optimal tradeoff between hydrolysis and condensation of HMTA. Benefiting from the synergy of the amorphous ZnO layer and the embedded CDs, the multijunction composite photoanodes exhibited significantly improved PEC performance and stability for water oxidation.

5.
J Agric Food Chem ; 71(19): 7566-7574, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37129992

RESUMO

Resveratrol and its analogs are phytochemicals. Human 3ß-hydroxysteroid dehydrogenase 1 (3ß-HSD1) synthesizes steroid hormones for normal pregnancy or promoting cancer metastasis. Whether they inhibit 3ß-HSD1 remains unclear. In this study, the inhibitory potency, mode of action, structure-activity relationship, and docking parameters of resveratrol and its analogs on 3ß-HSD1 and rat homolog 3ß-HSD4 were analyzed. The inhibitory potency of these chemicals on human 3ß-HSD1 was 4,4'-dihydroxystilbene (IC50, 3.68 µM) > pinostilbene (8.07 µM) > pinosylvin (10.60 µM) > lunularin (26.84 µM) > resveratrol (30.20 µM) > dihydroresveratrol (>100 µM) = oxyresveratrol (>100 µM) > dihydropinosylvin (ineffective at 100 µM). Resveratrol analogs and metabolites are mixed or competitive inhibitors of human 3ß-HSD1. Resveratrol and 4,4'-dihydroxystilbene inhibited progesterone secretion by human JAr cells at ≥1 µM. Resveratrol (IC50, 32.09 µM) and pinosylvin (34.71 µM) significantly inhibited rat placental 3ß-HSD4 activity. Docking analysis shows that resveratrol analogs and metabolites bind the steroid-binding sites of human 3ß-HSD1 and rat 3ß-HSD4 and interact with the catalytic residues Ser125/Thr125 and Tyr155. The negative correlation of LogP and IC50 values for human 3ß-HSD1 indicates that lipophilicity of chemicals plays a critical role in the inhibitory effect of chemicals. In conclusion, 4,4'-dihydroxystilbene, pinostilbene, and pinosylvin effectively inhibit human 3ß-HSD1 depending on their lipophilicity, thereby acting as potential therapeutic agents.


Assuntos
Placenta , Esteroides , Humanos , Ratos , Feminino , Gravidez , Animais , Resveratrol , Placenta/metabolismo , Relação Estrutura-Atividade , Esteroides/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo
6.
Metabolites ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233652

RESUMO

Nuclear magnetic resonance (NMR)-based metabolomics, which comprehensively measures metabolites in biological systems and investigates their response to various perturbations, is widely used in research to identify biomarkers and investigate the pathogenesis of underlying diseases. However, further applications of high-field superconducting NMR for medical purposes and field research are restricted by its high cost and low accessibility. In this study, we applied a low-field, benchtop NMR spectrometer (60 MHz) employing a permanent magnet to characterize the alterations in the metabolic profile of fecal extracts obtained from dextran sodium sulfate (DSS)-induced ulcerative colitis model mice and compared them with the data acquired from high-field NMR (800 MHz). Nineteen metabolites were assigned to the 60 MHz 1H NMR spectra. Non-targeted multivariate analysis successfully discriminated the DSS-induced group from the healthy control group and showed high comparability with high-field NMR. In addition, the concentration of acetate, identified as a metabolite with characteristic behavior, could be accurately quantified using a generalized Lorentzian curve fitting method based on the 60 MHz NMR spectra.

7.
Toxicol Lett ; 382: 47-57, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217011

RESUMO

Benzophenones (BPs) are a class of chemicals found in various personal care and cosmetic products, such as sunscreens and lotions. Their usage is known to cause reproductive and hormonal health risks, but the exact mechanism of action remains unknown. In this study, we investigated the effects of BPs on human and rat placental 3ß-hydroxysteroid dehydrogenases (3ß-HSDs), which play a crucial role in the biosynthesis of steroid hormones, particularly progesterone. We tested inhibitory effects of 12 BPs, and performed structure-activity relationship (SAR) and in silico docking analysis. The potency of BPs to inhibit human 3ß-HSD1 (h3ß-HSD1) is BP-1 (IC50, 8.37 µM)>BP-2 (9.06 µM)>BP-12 (94.24 µM)>BP-7 (1160 µM) >BP-8 (1257 µM) >BP-6 (1410 µM) > other BPs (ineffective at 100 µM). The potency of BPs on rat r3ß-HSD4 is BP-1 (IC50, 4.31 µM)>BP-2 (117.3 µM)>BP-6 (669 µM) >BP-3 (820 µM)>other BPs (ineffective at 100 µM). BP-1, BP-2, and BP-12 are mixed h3ß-HSD1 inhibitors and BP-1 is a mixed r3ß-HSD4 inhibitor. LogP, lowest binding energy, and molecular weight were positively associated with IC50 for h3ß-HSD1, while LogS was negatively associated with IC50. The 4-OH substitution in the benzene ring plays a key role in enhancing the effectiveness of inhibiting h3ß-HSD1 and r3ß-HSD4, possibly through increasing water solubility and decreasing lipophilicity by forming hydrogen bonds. BP-1 and BP-2 inhibited progesterone production in human JAr cells. Docking analysis shows that 2-OH of BP-1 forms hydrogen bonds with catalytic residue Ser125 of h3ß-HSD1 and Thr125 of r3ß-HSD4. In conclusion, this study demonstrates that BP-1 and BP-2 are moderate inhibitors of h3ß-HSD1 and BP-1 is a moderate inhibitor of r3ß-HSD4. There is a significant SAR differences for 3ß-HSD homologues between BPs and distinct species-dependent inhibition of placental 3ß-HSDs.


Assuntos
Placenta , Progesterona , Humanos , Feminino , Gravidez , Animais , Ratos , Placenta/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade , 17-Hidroxiesteroide Desidrogenases , Benzofenonas/toxicidade
8.
Cell Mol Biol Lett ; 28(1): 31, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37062845

RESUMO

BACKGROUND: Metastasis is the leading cause of death among patients with colorectal cancer (CRC). Therefore, it is important to explore the molecular mechanisms of metastasis to develop effective therapeutic targets for CRC. In the present study, ribosomal protein L21 (RPL21) was considered as being involved in promoting CRC metastasis, yet the underlying mechanism requires further investigation. METHODS: Immunohistochemistry, western blotting, and quantitative reverse transcription polymerase chain reaction were performed to measure the expression of RPL21 and lysosome-associated membrane protein 3 (LAMP3) in CRC tissues and cells. Wound healing, transwell migration, and invasion assays were performed to study the migration and invasion of cultured CRC cells. An orthotopic CRC mouse model was developed to investigate the metastatic ability of CRC. Transcriptome sequencing was conducted to identify the genes related to RPL21. The dual-luciferase reporter gene assay was performed to determine the transcriptional activity of transcription factor EB (TFEB). The GST/His pull-down assay was performed to investigate the specific binding sites of RPL21 and LAMP3. The cell adhesion assay was performed to determine the adhesion ability of CRC cells. Immunofluorescence staining was performed to observe focal adhesions (FAs). RESULTS: RPL21 was highly expressed in CRC, contributing to tumor invasiveness and poor patient prognosis. Functionally, RPL21 promoted the migration and invasion of CRC cells in vitro and tumor metastasis in vivo. Moreover, LAMP3 was identified as being highly related to RPL21 and was essential in promoting the migration and invasion of CRC cells. Mechanistically, RPL21 activated the transcriptional function of TFEB to upregulate LAMP3 expression. RPL21 directly bound to the aa 341-416 domain of LAMP3 via its aa 1-40 and aa 111-160 segments. The combination of RPL21 and LAMP3 enhanced the stability of the RPL21 protein by suppressing the degradation of the ubiquitin-proteasome system. Furthermore, RPL21 and LAMP3 promoted the formation of immature FAs by activating the FAK/paxillin/ERK signaling pathway. CONCLUSIONS: RPL21 promoted invasion and metastasis by regulating FA formation in a LAMP3-dependent manner during CRC progression. The interaction between RPL21 and LAMP3 may function as a potential therapeutic target against CRC.


Assuntos
Neoplasias Colorretais , Adesões Focais , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , Metástase Neoplásica/patologia , Transdução de Sinais , Proteínas de Neoplasias/metabolismo , Proteínas de Membrana Lisossomal/metabolismo
9.
J Steroid Biochem Mol Biol ; 230: 106279, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871834

RESUMO

Benzophenone (BP) ultraviolet (UV) -filters have been widely used to prevent adverse effects of UV. Whether they can disrupt gonadal steroidogenesis remains unclear. Gonadal 3ß-hydroxysteroid dehydrogenases (3ß-HSD) catalyse the conversion of pregnenolone to progesterone. This study explored the effect of 12 BPs on human, rat, and mouse 3ß-HSD isoforms, and analysed the structure-activity relationship (SAR) and underlying mechanisms. The inhibitory potency was BP-1 (IC50, 5.66 ± 0.95 µM) > BP-2 (5.84 ± 2.22 µM) > BP-6 (185.8 ± 115.2 µM) > BP3-BP12 on human KGN 3ß-HSD2, BP-2 (5.90 ± 1.02 µM) > BP-1 (7.55 ± 1.26 µM) > BP3-B12 on rat testicular 3ß-HSD1, and BP-1 (15.04 ± 5.20 µM) > BP-2 (22.64 ± 11.81 µM) > BP-6(125.1 ± 34.65 µM)> BP-7 (161.1 ± 102.4 µM) > other BPs on mouse testicular 3ß-HSD6. BP-1 is a mixed inhibitor of human, rat, and mouse 3ß-HSDs, and BP-2 is a mixed inhibitor of human and rat 3ß-HSDs and a noncompetitive inhibitor of mouse 3ß-HSD6. 4-Hydroxyl substitution in the benzene ring plays a key role in enhancing potency of inhibiting human, rat, and mouse gonadal 3ß-HSDs. BP-1 and BP-2 can penetrate human KGN cells to inhibit progesterone secretion at ≥ 10 µM. Docking analysis revealed that the 4-hydroxyl group of BP-1 and BP-2 forms hydrogen bonds with residue Ser123 of human 3ß-HSD2 and residue Asp127 of rat 3ß-HSD1. In conclusion, this study demonstrates that BP-1 and BP-2 are the most potent inhibitors of human, rat, and mouse gonadal 3ß-HSDs and that there is a significant SAR difference.


Assuntos
3-Hidroxiesteroide Desidrogenases , Progesterona , Humanos , Ratos , Camundongos , Animais , Masculino , Progesterona/farmacologia , 3-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo , Testículo/metabolismo , Gônadas/metabolismo , Relação Estrutura-Atividade
10.
Toxicol Lett ; 379: 76-86, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965607

RESUMO

3ß-Hydroxysteroid dehydrogenase/steroid Δ5,4-isomerase 1 (3ß-HSD1) plays a critical role in the biosynthesis of progesterone from pregnenolone in the human placenta to maintain normal pregnancy. Whether they inhibit placental 3ß-HSD1 and mode of inhibition remains unclear. In this study, we screened 21 pesticides and fungicides in five classes to inhibit human 3ß-HSD1 and compared them to rat homolog 3ß-HSD4. 3ß-HSD activity was measured by catalyzing pregnenolone to progesterone in the presence of NAD+. Of the 21 chemicals, azoles (difenoconazole), thiocarbamates (thiram and ferbam) and organochlorine (hexachlorophene) significantly inhibited human 3ß-HSD1 with half maximal inhibitory concentration (IC50) values of 2.77, 0.24, 0.68, and 17.96 µM, respectively. We also found that difenoconazole, ferbam and hexachlorophene are mixed/competitive inhibitors of 3ß-HSD1 while thiram is a mixed/noncompetitive inhibitor. Docking analysis showed that difenoconazole and hexachlorophene bound steroid-binding site. Difenoconazole and hexachlorophene except thiram and ferbam also significantly inhibited rat 3ß-HSD4 activity with IC50 of 1.12 and 2.28 µM, respectively. Thiram and ferbam significantly inhibited human 3ß-HSD1 possibly by interfering with cysteine residues, while they had no effects on rat 3ß-HSD4. In conclusion, some pesticides potently inhibit placental 3ß-HSD, leading to the reduction of progesterone formation.


Assuntos
Fungicidas Industriais , Praguicidas , Humanos , Ratos , Feminino , Gravidez , Animais , Placenta/metabolismo , Fungicidas Industriais/toxicidade , Progesterona , 3-Hidroxiesteroide Desidrogenases/metabolismo , Praguicidas/toxicidade , Tiram , Hexaclorofeno , Esteroides , Pregnenolona/metabolismo
11.
Ecotoxicol Environ Saf ; 254: 114715, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871355

RESUMO

Bisphenols (BPs) as endocrine-disrupting compounds have drawn attention to their health hazards. Whether a BP interferes with glucocorticoid metabolism remains unclear. 11ß-Hydroxysteroid dehydrogenase 2 (11ß-HSD2) is a key glucocorticoid-metabolizing enzyme that controls fetal glucocorticoid levels across the placental barrier and mineralocorticoid receptor specificity in the kidney. In this study, 11 BPs were tested to inhibit human placental and rat renal 11ß-HSD2 and were analyzed for inhibitory potency, mode action, and docking parameters. BPs had inhibitory potency against human 11ß-HSD2: BPFL>BPAP>BPZ>BPB>BPC>BPAF>BPA>TDP and the IC10 values were 0.21, 0.55, 1.04, 2.04, 2.43, 2.57, 14.43, and 22.18 µM, respectively. All BPs are mixed inhibitors except BPAP, which is a competitive inhibitor for human 11ß-HSD2. Some BPs also inhibited rat renal 11ß-HSD2, with BPB (IC50, 27.74 ± 0.95) > BPZ (42.14 ± 0.59) > BPAF (54.87 ± 1.73) > BPA (77.32 ± 1.20) > other BPs (about 100 µM). Docking analysis showed that all BPs bound to the steroid-binding site, interacting with the catalytic residue Tyr232 of both enzymes and the most potent human 11ß-HSD2 inhibitor BPFL acts possibly due to its large fluorene ring that has hydrophobic interaction with residues Glu172 and Val270 and π-stacking interaction with catalytic residue Tyr232. The increase in the size of substituted alkanes and halogenated groups in the methane moiety of the bridge of BPs increases its inhibitory potency. Regressions of the lowest binding energy with inhibition constant indicated that there was an inverse regression. These results indicated that BPs significantly inhibited human and rat 11ß-HSD2 activity and that there were species-dependent differences.


Assuntos
Glucocorticoides , Placenta , Ratos , Humanos , Gravidez , Feminino , Animais , Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Placenta/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Relação Estrutura-Atividade
12.
Dalton Trans ; 52(11): 3438-3448, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36825845

RESUMO

Exploring amorphous mixed transition metal hydroxide electrocatalysts with high performance and stability for overall water splitting is a difficult challenge under industrial electrolytic conditions. Herein, a sea urchin-like amorphous MgNiCo hydroxide (MgxNi1-xCo-OH, 0 < x < 1), self-assembled from nanowire arrays, is synthesized by the hydrothermal process. The synergistic effect between Mg and Ni/Co adjusts their crystal structure and morphology, which can improve the inherent activity and provide more active sites. Benefiting from the favorable structural features, Mg0.5Ni0.5Co-OH exhibits superior electrocatalytic oxygen and hydrogen evolution reaction (OER and HER) activity with a low overpotential of 277 and 110 mV (10 mA cm-2) in 1 M KOH at 25 °C. Furthermore, overpotentials of 239 and 197 mV are required to achieve a current density of 50 mA cm-2 for the OER and HER under simulated industrial electrolysis conditions (5 M KOH at 65 °C). Notably, Mg0.5Ni0.5Co-OH remarkably accelerates water splitting with a low voltage of 1.938 and 1.699 V for 50 mA cm-2 in 1 M KOH at 25 °C and 5 M KOH at 65 °C, respectively. This work presents a novel amorphous strategy to design and construct sea urchin-like mixed metal hydroxide bifunctional efficient electrocatalysts for industrial applications.

13.
J Steroid Biochem Mol Biol ; 225: 106202, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241036

RESUMO

Human 3ß-hydroxysteroid dehydrogenase type I (HSD3B1) and rat type IV (HSD3B4) in placentas catalyze the conversion of pregnenolone to progesterone, which plays a key role in maintaining pregnancy. Many phenolic compounds potentially inhibit HSD3B in placentas as endocrine disruptors. In this study, the effects of 16 phenolic compounds on the activity of human HSD3B1 and rat HSD3B4 were determined and the structure-activity relationship was compared. HSD3B1 in human placental microsomes and HSD3B4 in rat placental microsomes were used to measure their activities and pregnenolone and NAD+ were used as substrates. Of the 16 phenolic compounds, 4-nonylphenol, pentabromophenol, and 2-bromophenol resulted in residual human HSD3B1 activity lower than 50 % and 4-nonylphenol and pentabromophenol resulted in residual rat HSD3B4 activity lower than 50 %. 4-Nonylphenol, pentabromophenol, and 2-bromophenol were mixed inhibitors of human HSD3B1, with Ki values of 2.31, 3.58 and 4.86 µM, respectively, while 4-nonylphenol and pentabromophenol were noncompetitive inhibitors of rat HSD3B4 with Ki values of 20.86 and 141.8 µM. Molecular docking showed that 4-nonylphenol, pentabromophenol, and 2-bromophenol docked to the active sites of human HSD3B1 and rat HSD3B4, and the shift of residue S125 in human HSD3B1 to T125 in rat HSD3B4 could explain the species-dependent difference in their inhibitory potency and mode of action. This study demonstrates that 4-nonylphenol, pentabromophenol, and 2-bromophenol are mixed inhibitors of human placental HSD3B1, while 4-nonylphenol and pentabromophenol are noncompetitive inhibitors of rat HSD3B4, possibly blocking the placental steroidogenesis.


Assuntos
Complexos Multienzimáticos , Placenta , Humanos , Feminino , Gravidez , Ratos , Animais , Simulação de Acoplamento Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/farmacologia , Pregnenolona/farmacologia , 3-Hidroxiesteroide Desidrogenases
14.
Biochem Biophys Res Commun ; 638: 155-162, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459879

RESUMO

Moderate acute stress responses are beneficial for adaptation and maintenance of homeostasis. Exposure of male rat to stress induces effects in the bed nucleus of the stria terminalis (BNST), for it can be activated by the same stimuli that induce activation of the hypothalamic-pituitary-adrenal axis. However, the underlying mechanism of the BNST on male stress reactivity remains unclear. In this study, we explored whether systematic administration of dexmedetomidine (DEXM) altered the acute stress reactivity through its effect on the BNST. Male Sprague-Dawley rats in the stress (STRE) group, DEXM group, and the DEXM + GSK-650394 (GSK, an antagonist of serum- and glucocorticoid-inducible kinase 1 (SGK1)) group, except those in the vehicle (VEH) group, underwent 1-h restraint plus water-immersion (RPWI) exposure. All the rats proceeded the open field test (OFT) 24 h before RPWI and 1 h after RPWI. After the second OFT, the rats received VEH, DEXM (75 µg/kg i.p.), or were pretreated with GSK (2 µM i.p.) 0.5 h ahead of DEXM respectively. The third OFT was conducted 6 h after drug administration and then the rats were sacrificed. The rats that experienced RPWI showed dramatically elevated serum corticosterone (CORT), multiplied neuronal nitric oxide synthase (nNOS) and SGK1 in the BNST, and terrible OFT behavior. We discovered when the nNOS and SGK1 were decreased in the rat BNST through DEXM treatment, the serum CORT was reduced and the OFT manifestation was ameliorated, whereas these were restrained by GSK application. Our results reveal that modest interventions to SGK1 and nNOS in the BNST improve the male rat reactivity to acute stress, and DEXM was one modulator of these effects.


Assuntos
Dexmedetomidina , Núcleos Septais , Ratos , Masculino , Animais , Núcleos Septais/metabolismo , Glucocorticoides/farmacologia , Ratos Sprague-Dawley , Óxido Nítrico Sintase Tipo I/metabolismo , Dexmedetomidina/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Estresse Psicológico , Sistema Hipófise-Suprarrenal/metabolismo , Corticosterona
15.
Chem Biol Interact ; 369: 110292, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470526

RESUMO

Many insecticides and fungicides are endocrine-disrupting compounds, which possibly interfere with the placental endocrine system. In the placenta, 3ß-hydroxysteroid dehydrogenase/Δ5,4-isomerase type 1 (HSD3B1) is the major steroidogenic enzyme, which makes progesterone from pregnenolone to support the placental stability. In this study, we screened 12 classes of insecticides and fungicides to inhibit placental HSD3B1 activity and compared them to the rat homolog type 4 (HSD3B4) isoform. Human HSD3B1 activity and rat HSD3B4 activity were measured in the presence of 200 nM pregnenolone and 0.2 mM NAD+ and 100 µM of test chemical. Triclosan, triflumizole, dichlone, and oxine at 100 µM significantly inhibited human HSD3B1 activity with the residual activity being less than 50% of the control. Further study showed that the half-maximal inhibitory concentration (IC50) values of triclosan, triflumizole, dichlone, and oxine were 85.53 ± 9.14, 73.75 ± 3.42, 2.54 ± 0.40, and 102.93 ± 6.10 µM, respectively. In the presence of pregnenolone, triclosan, triflumizole, and dichlone were mixed inhibitors of HSD3B1, while oxine was a noncompetitive inhibitor. In the presence of NAD+, triclosan exhibited competitive inhibition while triflumizole possessed uncompetitive inhibition. Docking analysis showed that triclosan bound NAD+-binding site, while triflumizole, dichlone, and oxine mostly bound steroid-binding site. When the effect of these insecticides on rat placental HSD3B4 activity was screened in the presence of 200 nM pregnenolone, atrazine, triclosan, triflumizole, oxine, cyprodinil, and diphenyltin at 100 µM significantly inhibited rat HSD3B4 activity, with IC50 values of triclosan, triflumizole, oxine, and cyprodinil were 82.99 ± 6.48, 35.45 ± 2.73, 105.59 ± 12.04, and 43.37 ± 3.00 µM, respectively. The mode action analysis showed that triflumizole and cyprodinil were almost competitive inhibitors, while triclosan and oxine were almost noncompetitive inhibitors of rat HSD3B4. Docking analysis showed that triclosan and oxine bound cofactor NAD+ binding residues more than steroid-binding residues of rat HSD3B4 while triflumizole and cyprodinil bound most pregnenolone-interactive residues. In conclusion, some insecticides such as triclosan, triflumizole, and oxine can effectively inhibit both human and rat placental HSD3B activity and they have unique mode action due to the structure difference.


Assuntos
Fungicidas Industriais , Inseticidas , Triclosan , Humanos , Gravidez , Feminino , Ratos , Animais , Placenta , Inseticidas/toxicidade , Inseticidas/metabolismo , Fungicidas Industriais/farmacologia , NAD/metabolismo , Triclosan/metabolismo , Triclosan/farmacologia , Isomerases/metabolismo , Isomerases/farmacologia , Pregnenolona/metabolismo , Pregnenolona/farmacologia , Complexos Multienzimáticos
16.
J Ethnopharmacol ; 305: 116051, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36572324

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, curcuma longa L has been applied to treat pain and tumour-related symptoms for over thousands of years. Curcuminoids, polyphenolic compounds, are the main pharmacological component from the rhizome of Curcuma longa L. Pharmacological investigations have found that curcuminoids have many pharmacological activities of anti-inflammatory, anti-tumour, and anti-metastasis. AIM OF THE STUDY: 3ß-Hydroxysteroid dehydrogenase (3ß-HSD1) catalyses the production of steroid precursors for androgens and estrogens, which play an essential role in cancer metastasis. We explored the potency and mode of action of curcuminoids and their metabolites of inhibiting 3ß-HSD1 activity and compared the species difference between human and rat. MATERIALS AND METHODS: In this study, we investigated the direct inhibition of 6 curcuminoids on human placental 3ß-HSD1 activity and compared the species-dependent difference in human 3ß-HSD1 and rat placental homolog 3ß-HSD4. RESULTS: The inhibitory potency of curcuminoids on human 3ß-HSD1 was demethoxycurcumin (IC50, 0.18 µM) > bisdemethoxycurcumin (0.21 µM)>curcumin (2.41 µM)> dihydrocurcumin (4.13 µM)>tetrahydrocurcumin (15.78 µM)>octahydrocurcumin (ineffective at 100 µM). The inhibitory potency of curcuminoids on rat 3ß-HSD4 was bisdemethoxycurcumin (3.34 µM)>dihydrocurcumin (5.12 µM)>tetrahydrocurcumin (41.82 µM)>demethoxycurcumin (88.10 µM)>curcumin (137.06 µM)> octahydrocurcumin (ineffective at 100 µM). Human choriocarcinoma JAr cells with curcuminoid treatment showed that these chemicals had similar potency to inhibit progesterone secretion under basal and 8bromo-cAMP stimulated conditions. Docking analysis showed that all chemicals bind pregnenolone-binding site with mixed/competitive mode for 3ß-HSD. CONCLUSION: Some curcuminoids are potent human placental 3ß-HSD1 inhibitors, possibly being potential drugs to treat prostate cancer and breast cancer.


Assuntos
Curcumina , Animais , Feminino , Humanos , Gravidez , Ratos , 3-Hidroxiesteroide Desidrogenases/metabolismo , Curcuma/química , Curcumina/química , Diarileptanoides/farmacologia , Hidroxiesteroide Desidrogenases/metabolismo , Placenta/metabolismo , Relação Estrutura-Atividade
17.
J Exp Clin Cancer Res ; 41(1): 81, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241150

RESUMO

BACKGROUND: Tumor budding is included in the routine diagnosis of colorectal cancer (CRC) and is considered a tumor prognostic factor independent of TNM staging. This study aimed to identify the fibroblast-mediated effect of tumor bud-derived C-C chemokine ligand 5 (CCL5) on the tumor microenvironment (TME). METHODS: Recruitment assays and a human cytokine array were used to detect the main cytokines that CRC tumor buds secrete to recruit fibroblasts. siRNA transfection and inhibitor treatment were used to investigate the role of fibroblast CCL5 receptors in fibroblast recruitment. Subsequently, transcriptome sequencing was performed to explore the molecular changes occurring in fibroblasts upon stimulation with CCL5. Finally, clinical specimens and orthotopic xenograft mouse models were studied to explore the contribution of CCL5 to angiogenesis and collagen synthesis. RESULTS: Hematoxylin-eosin staining and immunochemistry revealed a higher number of fibroblasts at the invasive front of CRC tissue showing tumor budding than at sites without tumor budding. In vitro experiments demonstrated that CCL5 derived from tumor buds could recruit fibroblasts by acting on the CCR5 receptors on fibroblasts. Tumor bud-derived CCL5 could also positively regulate solute carrier family 25 member 24 (SLC25A24) expression in fibroblasts, potentially activating pAkt-pmTOR signaling. Moreover, CCL5 could increase the number of α-SMAhigh CD90high FAPlow fibroblasts and thus promote tumor angiogenesis by enhancing VEGFA expression and making fibroblasts transdifferentiate into vascular endothelial cells. Finally, the results also showed that CCL5 could promote collagen synthesis through fibroblasts, thus contributing to tumor progression. CONCLUSIONS: At the invasive front of CRC, tumor bud-derived CCL5 can recruit fibroblasts via CCR5-SLC25A24 signaling, further promoting angiogenesis and collagen synthesis via recruited fibroblasts, and eventually create a tumor-promoting microenvironment. Therefore, CCL5 may serve as a potential diagnostic marker and therapeutic target for tumor budding in CRC.


Assuntos
Neoplasias Colorretais , Células Endoteliais , Animais , Antiporters/metabolismo , Antiporters/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL5/genética , Neoplasias Colorretais/patologia , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Proteínas Mitocondriais/metabolismo , Receptores CCR5 , Transdução de Sinais , Microambiente Tumoral
18.
Mol Ther Oncolytics ; 24: 873-886, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35317515

RESUMO

Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family, which plays an important role in regulating cell membrane and actin, has been reported to interact with Cdc42 and be closely associated with tumor invadopodia formation. In this study, we found that CIP4 expression was significantly higher in human CRC tissues and correlated with the CRC infiltrating depth and metastasis, as well as the lower survival rate in patients. In cultured CRC cells, knockdown of CIP4 inhibited cell migration and invasion ability in vitro and tumor metastasis in vivo, while the overexpression of CIP4 promoted invadopodia formation and matrix degradation ability. We then identified GTP-Cdc42 as a directly interactive protein of CIP4, which was upregulated and recruited by CIP4. Furthermore, activated NF-κB signaling pathway was found in CIP4 overexpression of CRC cells contributing to invadopodia formation, while the inhibition of either CIP4 or Cdc42 led to the suppression of the NF-κB pathway and resulted in a decreased quantity of invadopodia. Our findings suggested that CIP4 targets to recruit GTP-Cdc42 and directly combines with it to accelerate invadopodia formation and function by activating NF-κB signaling pathway, thus promoting CRC infiltration and metastasis.

19.
Cell Death Differ ; 28(12): 3251-3269, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34131310

RESUMO

Tumour metastasis is a major reason accounting for the poor prognosis of colorectal cancer (CRC), and the discovery of targets in the primary tumours that can predict the risk of CRC metastasis is now urgently needed. In this study, we identified autophagy-related protein 9B (ATG9B) as a key potential target gene for CRC metastasis. High expression of ATG9B in tumour significantly increased the risk of metastasis and poor prognosis of CRC. Mechanistically, we further find that ATG9B promoted CRC invasion mainly through autophagy-independent manner. MYH9 is the pivotal interacting protein for ATG9B functioning, which directly binds to cytoplasmic peptide segments aa368-411 of ATG9B by its head domain. Furthermore, the combination of ATG9B and MYH9 enhance the stability of each other by decreasing their binding to E3 ubiquitin ligase STUB1, therefore preventing them from ubiquitin-mediated degradation, which further amplified the effect of ATG9B and MYH9 in CRC cells. During CRC cell invasion, ATG9B is transported to the cell edge with the assistance of MYH9 and accelerates focal adhesion (FA) assembly through mediating the interaction of endocytosed integrin ß1 and Talin-1, which facilitated to integrin ß1 activation. Clinically, upregulated expression of ATG9B in human CRC tissue is always accompanied with highly elevated expression of MYH9 and associated with advanced CRC stage and poor prognosis. Taken together, this study highlighted the important role of ATG9B in CRC metastasis by promoting focal adhesion assembly, and ATG9B together with MYH9 can provide a pair of potential therapeutic targets for preventing CRC progression.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Colorretais/genética , Adesões Focais/metabolismo , Proteínas de Membrana/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Feminino , Humanos , Camundongos , Metástase Neoplásica , Prognóstico , Análise de Sobrevida
20.
Artigo em Inglês | MEDLINE | ID: mdl-33934043

RESUMO

Sclareol, mainly isolated from Salvia officinalis, has a variety of pharmacological effects. In this work, a sensitive and rapid gas chromatography-tandem mass spectrometry (GC-MS/MS) method was first developed and validated for the determination and pharmacokinetics of sclareol in rat plasma. The chromatographic seperation of biosamples was performed with an HP-5MS column. Ethyl acetate was selected as the solvent to extract analytes from rat plasma. The multiple reaction monitoring transitions for sclareol and dehydrocostuslactone (Internal Standard, IS) were m/z 177 â†’ 121 and m/z 230 â†’ 173, respectively. The intra- and inter- precision, accuracy, matrix effect, recovery and stability meet the method requirements for biological sample analysis. The lowest limit of quantification (LLOQ) of the developed method for sclareol determination was 20 ng/mL. After intravenous administration (5.0 mg/kg) of sclareol to the rats, its drug clearance (CLz) and elimination half-life (t1/2z) was 2.7 ± 1.3 L/h/kg and 6.0 ± 4.6 h, respectively. The apparent volume of distribution (Vz) was 21.4 ± 12.9 L/kg, which indicated that sclareol was mainly distributed in extracellular fluid. Our results provided useful information for the further pharmacological investigation and preclinical studies of sclareol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA