RESUMO
This study aimed to evaluate and compare the effects of inertial flywheel training and accentuated eccentric loading training on the neuromuscular performance of well-trained male college sprinters. Fourteen sprinters were recruited and randomly assigned to either the flywheel training (FWT, n = 7) group or the accentuated eccentric loading training (AELT, n = 7) group. The FWT group completed four sets of 2 + 7 repetitions of flywheel squats, whereas the AELT group performed four sets of seven repetitions of barbell squats (concentric/eccentric: 80%/120% 1RM). Both groups underwent an eight-week squat training program, with two sessions per week. A two-way repeated ANOVA analysis was used to find differences between the two groups and between the two testing times (pre-test vs. post-test). The results indicated significant improvements in all measured variables for the FWT group: 1RM (5.0%, ES = 1.28), CMJ (13.3%, ES = 5.42), SJ (6.0%, ES = 2.94), EUR (6.5%, ES = 4.42), SLJ (2.9%, ES = 1.77), and 30 m sprint (-3.4%, ES = -2.80); and for the AELT group: 1RM (6.3%, ES = 2.53), CMJ (7.4%, ES = 3.44), SJ (6.4%, ES = 2.21), SLJ (2.2%, ES = 1.20), and 30 m sprint (-3.0%, ES = -1.84), with the exception of EUR (0.9%, ES = 0.63, p = 0.134), showing no significant difference. In addition, no significant interaction effects between group and time were observed for 1RM back squat, SJ, SLJ, and 30 m sprint (p > 0.05). Conversely, a significant interaction effect between group and time was observed for both CMJ and EUR (p < 0.001); post hoc analysis revealed that the improvements in CMJ and EUR were significantly greater in the FWT group compared to the AELT group (p < 0.001). These findings indicate that both FWT and AELT are effective at enhancing lower-body strength, power, and speed in well-trained male college sprinters, with FWT being particularly more effective in promoting elastic energy storage and the full utilization of the stretch-shortening cycle.
RESUMO
BACKGROUND: This systematic review and meta-analysis aimed to analyze whether isoinertial flywheel training (FWT) is superior to traditional resistance training (TRT) in enhancing maximal strength and muscle power in healthy individuals. METHODS: Electronic searches were conducted in the Web of Science, PubMed, Cochrane Library, SPORTDiscus, and Scopus databases up to 21 April 2024. Outcomes were analyzed as continuous variables using either a random or fixed effects model to calculate the standardized mean difference (SMD) and 95% confidence intervals (CI). RESULTS: A total of sixteen articles, involving 341 subjects, met the inclusion criteria and were included in the statistical analyses. The pooled results indicate no statistically significant differences between FWT and TRT in developing maximal strength in healthy individuals (SMD = 0.24, 95% CI [-0.26, 0.74], p = 0.35). Additionally, the pooled outcomes showed a small-sized effect in muscle power with FWT (SMD = 0.47, 95% CI [0.10, 0.84]), which was significantly higher than that with TRT (p = 0.01) in healthy individuals. Subgroup analysis revealed that when the total number of FWT sessions is between 12 and 18 (1-3 times per week), it significantly improves muscle power (SMD = 0.61, 95% CI [0.12, 1.09]). Significant effects favoring FWT for muscle power were observed in both well-trained (SMD = 0.58, 95% CI [0.04, 1.13]) and untrained individuals (SMD = 1.40, 95% CI [0.23, 2.57]). In terms of exercise, performing flywheel training with squat and lunge exercises significantly enhances muscle power (SMD = 0.43; 95% CI: 0.02-0.84, and p = 0.04). Interestingly, FWT was superior to weight stack resistance training (SMD = 0.61, 95% CI [0.21, 1.00]) in enhancing muscle power, while no significant differences were found compared to barbell free weights training (SMD = 0.36, 95% CI [-0.22, 0.94]). CONCLUSIONS: This meta-analysis confirms the superiority of FWT compared to TRT in promoting muscle power in both healthy untrained and well-trained individuals. Squats and lunges for FWT are more suitable for improving lower limb explosive power. It is recommended that coaches and trainers implement FWT for six weeks, 2-3 times per week, with at least a 48 h interval between each session. Although FWT is not superior to free weights training, it is advisable to include FWT in sport periodization to diversify the training stimuli for healthy individuals.
RESUMO
Objective: The primary objective of this study was to investigate the immediate effects of two doses (Dose1 and Dose2,D1 and D2) of inertial Flywheel Eccentric Overload (FEOL), Eccentric Hook (EH), and High-intensity Half Squat (HHS) on muscle explosiveness in male sprinters. Methods: Twenty-one sub-elite male sprinters were randomly assigned to three groups: the FEOL group (n=7), the EH group (n=7), and the HSS group (n=7),Measurements of athletes' explosive jumps (CMJ, SJ, SLJ) heights, relative peak power indices, and 30-m sprint times were collected before and 6 min after the intervention. Results: At D1 loading dose, CMJ, SJ jump height, and relative peak power increased significantly (p < 0.05) after HHS training intervention, while there was no significant change in FEOL and EH training (p > 0.05). At D2 loading dose, CMJ, SJ jump height, and relative peak power increased significantly (p < 0.01) after FEOL and EH training intervention, but at D2HHS intervention, these indexes tended to decrease (p < 0.05). None of the three training protocols significantly improved SLJ performance (p > 0.05). CMJ vertical jump height and relative peak power were significantly higher after D2FEOL and D2EH interventions than after D1HHS (P < 0.05). Conclusion: D1HHS, D2FEOL and D2EH3 intervention methods can all improve the performance of sub-elite athletes in the 30-m test, CMJ test and SJ test. in the CMJ test, FEOL training demonstrated a higher acute augmentation effect compared to EH training.