Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Invest Ophthalmol Vis Sci ; 64(14): 40, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015176

RESUMO

Purpose: Diabetic retinopathy (DR) is a leading cause of blindness in working-age adults characterized by retinal dysfunction and neurovascular degeneration. We previously reported that deletion of X-box binding protein 1 (XBP1) leads to accelerated retinal neurodegeneration in diabetes; however, the mechanisms remain elusive. The goal of this study is to determine the role of XBP1 in the regulation of photoreceptor synaptic integrity in early DR. Methods: Diabetes was induced by streptozotocin in retina-specific XBP1 conditional knockout (cKO) or wild-type (WT) mice to generate diabetic cKO (cKO/DM) or WT/DM mice for comparison with nondiabetic cKO (cKO/NDM) and WT/NDM mice. Retinal morphology, structure, and function were assessed by immunohistochemistry, optical coherence tomography, and electroretinogram (ERG) after 3 months of diabetes. The synapses between photoreceptors and bipolar cells were examined by confocal microscopy, and synaptic integrity was quantified using the QUANTOS algorithm. Results: We found a thinning of the outer nuclear layer and a decline in the b-wave amplitude in dark- and light-adapted ERG in cKO/DM mice compared to all other groups. In line with these changes, cKO mice showed increased loss of synaptic integrity compared to WT mice, regardless of diabetes status. In searching for candidate molecules responsible for the loss of photoreceptor synaptic integrity in diabetic and XBP1-deficient retinas, we found decreased mRNA and protein levels of DLG4/PSD-95 in cKO/DM retina compared to WT/DM. Conclusions: These findings suggest that XBP1 is a crucial regulator in maintaining synaptic integrity and retinal function, possibly through regulation of synaptic scaffold proteins.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Proteína 1 de Ligação a X-Box , Animais , Camundongos , Algoritmos , Retinopatia Diabética/genética , Eletrorretinografia , Retina , Proteína 1 de Ligação a X-Box/genética
2.
Sensors (Basel) ; 23(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896721

RESUMO

To address the challenges associated with nonlinearity, non-stationarity, susceptibility to redundant noise interference, and the difficulty in extracting fault feature signals from rolling bearing signals, this study introduces a novel combined approach. The proposed method utilizes the variational mode decomposition (VMD) and K-singular value decomposition (K-SVD) algorithms to effectively denoise and enhance the collected rolling bearing signals. Initially, the VMD method is employed to separate the overall noise into intrinsic mode functions (IMFs), reducing the noise content within each IMF. To optimize the mode component, K, and the penalty factor, α, in VMD, an improved arithmetic optimization algorithm (IAOA) is employed. This ensures the selection of optimal parameters and the decomposition of the signal into a set of IMFs, forming the original dictionary. Subsequently, the signals are decomposed into multiple IMFs using VMD, and an original dictionary is constructed based on these IMFs. K-SVD is then applied to the original dictionary to further reduce the noise in each IMF, resulting in a denoised and enhanced signal. To validate the efficacy of the proposed method, rolling bearing signals collected from Case Western Reserve University (CWRU) and thrust bearing test rigs were utilized. The experimental results demonstrate the feasibility and effectiveness of the proposed approach in denoising and enhancing the rolling bearing signals.

3.
Materials (Basel) ; 16(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837081

RESUMO

Corrosion under insulation (CUI) is a major threat to the structural integrity of insulated pipes and vessels. Pulsed eddy-current testing (PECT) is well known in the industry for detecting CUI, but its readings can be easily influenced by nearby conductive objects, including the insulation supporting metal mesh. As a sequel to our previous study, this paper focuses on the surface distribution of eddy currents at the time of the turning off of the driving voltage instead of examining the overall process of eddy current diffusion. Based on the fact that CUI takes place on the outside of the insulated specimen, the probe footprint was calculated only on the specimen surface. The corrosion depth was regarded as an increment to the probe lift-off, whose information was carried in the early PECT signal. Finite element simulations were performed to facilitate the calculation of the probe footprint and predict the signal behavior. The peak value, which appeared in the early phase of the differential PECT signal, was found to be well correlated with the corrosion depth. Further studies revealed that the mild steel mesh could result in the enlargement of the probe footprint and a decrease in the change rate of the peak value in relation to the corrosion depth. Finally, experiments were conducted to verify the simulation results. The presented findings are consistent with the previously reported results and provide a potential alternative to evaluate CUI in specific scenarios where the insulation has a fixed and uniform thickness.

4.
Soft Matter ; 19(2): 258-267, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36511950

RESUMO

Non-Newtonian fluid rheological properties are a hot research topic for realizing intelligent applications. In order to investigate the microscopic mechanism and structural evolution process of the nonlinear rheological behavior of non-Newtonian fluids, this paper systematically investigates two continuous nonlinear rheological behaviors of non-Newtonian fluids, namely shear-thickening and shear-thinning rheological properties, using a non-Newtonian fluid system composed of polyethylene glycol (PEG) mixed with nano-silica (Nano-SiO2) by a dissipative particle dynamics (DPD) method. It is shown that at low shear rates, the molecular chains of PEG in the fluid are stretched due to shear flow and the molecular structure is transformed into an ordered state; and the effective hydrodynamic radius of Nano-SiO2 beads decreases, which makes the translational friction coefficient of the beads decrease and the system mobility increases, exhibiting shear-thinning behavior. When the shear rate exceeds the critical value, the contact and collision probability between Nano-SiO2 beads in the non-Newtonian fluid increases; a large number of silicon hydroxyl groups exist on the surface of Nano-SiO2, which form a large number of hydrogen bonds when they are close to each other and constrain the particle separation, resulting in a large aggregation of Nano-SiO2 beads, leading to an increase in the effective kinetic radius of Nano-SiO2 beads and an increase in the coefficient of translational friction, forming a blockage of the fluid system and exhibiting a shear-thickening behavior. Our study provides insights for understanding the rheological behavior of non-Newtonian fluids from a microscopic perspective, and contributes to the intelligent application of non-Newtonian fluids.

5.
Micromachines (Basel) ; 15(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276845

RESUMO

Typical edge defects in the edge region of a new cemented carbide insert without edge preparation include burrs, poor surface quality, micro-breakages, and irregularities along the edge. To address the problems in new cemented carbide inserts without edge preparations, a chemical-mechanical synergistic preparation (CMSP) method for the cemented carbide insert cutting edge was proposed. Firstly, the CMSP device for the insert cutting edge was constructed. Then, the polishing slurry of the CMSP for the insert cutting edge was optimized using the Taguchi method combined with a grey relation analysis and fuzzy inference. Finally, orthogonal experiments, the Taguchi method, and analysis of variance (ANOVA) were used to investigate the effect of the polishing plate's rotational speed, swing angle, and input frequency of the controller on the edge preparation process, and the parameters were optimized. The results showed that the best parameter combination for the polishing slurry for the cemented carbide inserts was the mass concentration of the abrasive particle of 10 wt%, the mass concentration of the oxidant of 10 wt%, the mass concentration of the dispersant of 2 wt%, and the pH of 8. The CMSP process parameter combination for the linear edge had the polishing plate's rotational speed of 90 rpm, the swing angle of 6°, and the input frequency of the controller of 5000 Hz. The optimum CMSP process parameter combination for the circular edge had the polishing plate's rotational speed of 90 rpm, the swing angle of 6°, and the input frequency of the controller of 7000 Hz. The polishing plate's rotational speed had the most significant impact on the edge preparation process, followed by the swing angle, and the effect of the input frequency of the controller was the smallest. This study demonstrated that CMSP is a potential way to treat the cemented carbide insert cutting edge in a tool enterprise.

6.
Nat Commun ; 12(1): 1465, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674582

RESUMO

Atoh7 has been believed to be essential for establishing the retinal ganglion cell (RGC) lineage, and Pou4f2 and Isl1 are known to regulate RGC specification and differentiation. Here we report our further study of the roles of these transcription factors. Using bulk RNA-seq, we identify genes regulated by the three transcription factors, which expand our understanding of the scope of downstream events. Using scRNA-seq on wild-type and mutant retinal cells, we reveal a transitional cell state of retinal progenitor cells (RPCs) co-marked by Atoh7 and other genes for different lineages and shared by all early retinal lineages. We further discover the unexpected emergence of the RGC lineage in the absence of Atoh7. We conclude that competence of RPCs for different retinal fates is defined by lineage-specific genes co-expressed in the transitional state and that Atoh7 defines the RGC competence and collaborates with other factors to shepherd transitional RPCs to the RGC lineage.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Transcriptoma , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Mutação com Perda de Função , Camundongos , RNA Citoplasmático Pequeno , Análise de Sequência , Células-Tronco , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Nanotechnology ; 31(29): 295101, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32203949

RESUMO

Despite the promising target of immunosuppressive enzyme indoleamine-2,3-dioxygenase (IDO) for cancer immunotherapy, IDO blockade monotherapy does not show significant benefit to cancer patients in the clinic. Recent research has focused on the combinatorial therapy of the IDO inhibitor and the immune checkpoint blockade or chemotherapy. Here, we synthesize a drug conjugate methyltryptophan-paclitaxel (MP) by linking the IDO inhibitor, D-1-methyltryptophan (D-1MT), to the chemotherapeutic agent, paclitaxel (PTX), through an ester bond. MP exhibits a similar tubulin-stabilizing effect to PTX. Like PTX, MP binds to human serum albumin to form albumin-bound MP nanoparticles (MP NPs) with a particle size of ∼115 nm in diameter. MP NPs significantly improve the tumor concentration of D-1MT due to the hydrolysis of MP in tumors. The codelivery of PTX and D-1MT offered by MP NPs in tumors significantly enhances the anti-tumor effect compared with the albumin-bound PTX NPs. Immune cell phenotyping reveals that MP NPs ameliorate the immune environment through increasing the number of the effector CD8+ T cells, and decreasing the population of regulatory T cells and granulocyte-like myeloid-derived suppressor cells. These results prove that the design of the twin drug from the IDO inhibitor and PTX synergizes the anti-tumor effect and shows promise in clinical translation.


Assuntos
Albuminas/farmacologia , Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Paclitaxel/farmacologia , Triptofano/análogos & derivados , Albuminas/química , Animais , Antineoplásicos/química , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Composição de Medicamentos , Sinergismo Farmacológico , Feminino , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Melanoma Experimental/imunologia , Camundongos , Nanopartículas , Paclitaxel/química , Tamanho da Partícula , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Resultado do Tratamento , Triptofano/química , Triptofano/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Psychiatry ; 25(10): 2517-2533, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-30659288

RESUMO

Many of the genes disrupted in autism are identified as histone-modifying enzymes and chromatin remodelers, most prominently those that mediate histone methylation/demethylation. However, the role of histone methylation enzymes in the pathophysiology and treatment of autism remains unknown. To address this, we used mouse models of haploinsufficiency of the Shank3 gene (a highly penetrant monogenic autism risk factor), which exhibits prominent autism-like social deficits. We found that histone methyltransferases EHMT1 and EHMT2, as well as histone lysine 9 dimethylation (specifically catalyzed by EHMT1/2), were selectively increased in the prefrontal cortex (PFC) of Shank3-deficient mice and autistic human postmortem brains. Treatment with the EHMT1/2 inhibitor UNC0642 or knockdown of EHMT1/2 in PFC induced a robust rescue of autism-like social deficits in Shank3-deficient mice, and restored NMDAR-mediated synaptic function. Activity-regulated cytoskeleton-associated protein (Arc) was identified as one of the causal factors underlying the rescuing effects of UNC0642 on NMDAR function and social behaviors in Shank3-deficient mice. UNC0642 treatment also restored a large set of genes involved in neural signaling in PFC of Shank3-deficient mice. These results suggest that targeting histone methylation enzymes to adjust gene expression and ameliorate synaptic defects could be a potential therapeutic strategy for autism.


Assuntos
Transtorno Autístico/tratamento farmacológico , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Proteínas dos Microfilamentos/deficiência , Proteínas do Tecido Nervoso/deficiência , Animais , Transtorno Autístico/genética , Modelos Animais de Doenças , Feminino , Haploinsuficiência , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Masculino , Metilação/efeitos dos fármacos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Quinazolinas/farmacologia
9.
Genomics ; 112(1): 520-527, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30965097

RESUMO

Gene expression is generally regulated by multiple transcription factors (TFs). Despite previous findings of individual TFs regulating pancreatic α-amylase gene expression, the combinatorial transcriptional regulation is not fully understood. To gain insight into multiple TF regulation for pancreatic α-amylase gene, we employed a function conservation approach to predict interacting TFs regulating pancreatic α-amylase gene for 3 dietary animal groups. To this end, we have identified 77, 25, and 118 interacting TFs for herbivore, omnivore, and carnivore, respectively. Computational modeling of TF regulatory networks demonstrated that known pancreas-specific TFs (e.g. GR, NFAT, and PR) may play important roles in recruiting non pancreas-specific TFs to the TF-TF interaction networks, offering specificity and flexibility for controlling pancreatic α-amylase gene expression in different dietary animal groups. The findings from this study indicate that combinatorial transcriptional regulation could be a critical component controlling pancreatic α-amylase gene expression.


Assuntos
Regulação da Expressão Gênica , alfa-Amilases Pancreáticas/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Carnivoridade , Dieta , Herbivoria , Nutrientes , Análise de Sequência de DNA
10.
Mol Psychiatry ; 25(10): 2641, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31520066

RESUMO

A correction to this paper has been published and can be accessed via a link at the top of the paper.

11.
Pediatr Rheumatol Online J ; 17(1): 41, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299993

RESUMO

BACKGROUND: The pathology of juvenile dermatomyositis (JDM) is characterized by prominent vessel wall and perivascular inflammation. This feature of the disease has remained unexplained and under-investigated. We have hypothesized that plasma exosomes, which play an important role in inter-cellular communication, may play a role in the vascular injury associated with JDM. OBJECTIVE: To characterize the circulating exosomes of children with JDM and determine whether the small RNA cargoes within those exosomes are capable of altering transcriptional programs within endothelial cells. DESIGN/METHODS: We purified exosomes from plasma samples of children with active, untreated JDM (n = 6) and healthy controls (n = 9). We characterized the small RNA cargoes in JDM and control exosomes by RNA sequencing using the Illumina HiSeq 2500 platform. We then incubated isolated exosomes from healthy controls and children with JDM with cultured human aortic endothelial cells (HAEC) for 24 h. Fluorescence microscopy was used to confirm that both control and JDM exosomes were taken up by HAEC. RNA was then purified from HAEC that had been incubated with either control or JDM exosomes and sequenced on the Illumina platform. Differential expression of mRNAs from HAEC incubated with control or JDM exosomes was ascertained using standard computational methods. Finally, we assessed the degree to which differential gene expression in HAEC could be attributed to the different small RNA cargoes in JDM vs control exosomes using conventional and novel analytic methods. RESULTS: We identified 10 small RNA molecules that showed differential abundance when we compared JDM and healthy control exosomes. Fluorescence microscopy of labeled exosomes confirmed that both JDM and control exosomes were taken up by HAEC. Differential gene expression analysis revealed 59 genes that showed differential expression between HAEC incubated with JDM exosomes vs HAEC incubated with exosomes from controls. Statistical analysis of gene expression data demonstrated that multiple miRNAs exerted transcriptional control on multiple genes with HAEC. CONCLUSIONS: Plasma exosomes from children with active, untreated JDM are taken up by HAEC and are associated with alterations in gene expression in those cells. These findings provide new insight into potential mechanisms leading to the targeting of vascular tissue by the immune system in JDM.


Assuntos
Dermatomiosite/genética , Células Endoteliais/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , Adolescente , Aorta/citologia , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Dermatomiosite/metabolismo , Feminino , Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Masculino , Análise de Sequência de RNA
12.
Sci Rep ; 8(1): 10656, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006558

RESUMO

MicroRNAs (miRNAs), when subjected to environmental stimuli, can exhibit differential expression. As critical regulators of gene expression, differential miRNA expression has been implicated in numerous disorders of the nervous system. In this study, we focused on the effect of a general anesthetic, as an environmental stimulus, on miRNA expression of the developing brain. General anesthetics have potential long-lasting neurotoxic effects on the developing brain, resulting in behavioral changes in adulthood. We first carried out an unbiased profiling approach to examine the effect of single-episode neonatal general anesthetic, sevoflurance (sevo), exposure on miRNA expression of the brain. Neonatal sevo has a significant effect on the expression of specific miRNAs of the whole brain and the hippocampus that is both immediate - directly after neonatal treatment, as well as long-lasting - during adulthood. Functionally, neonatal sevo-associated miRNA gene-targets share potential neurodevelopmental pathways related to axon guidance, DNA transcription, protein phosphorylation and nervous system development. Our understanding on the role of miRNAs provides a putative epigenetic/molecular bridge that links neonatal general anesthetic's effect with its associated functional change.


Assuntos
Anestesia Geral/efeitos adversos , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , MicroRNAs/metabolismo , Fatores Etários , Anestésicos Gerais/administração & dosagem , Anestésicos Gerais/efeitos adversos , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Sevoflurano/administração & dosagem , Sevoflurano/efeitos adversos , Fatores de Tempo
13.
Nat Neurosci ; 21(8): 1139, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29872123

RESUMO

In the version of this article initially published, the blue diamonds in Fig. 2a-d were defined as Shank3+/Δc + saline; the correct definition is Shank3+/Δc + RMD. The error has been corrected in the HTML and PDF versions of the article.

14.
Sci Rep ; 8(1): 7805, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773851

RESUMO

Neutrophils in children with the polyarticular form of juvenile idiopathic arthritis (JIA) display abnormal transcriptional patterns linked to fundamental metabolic derangements. In this study, we sought to determine the effects of therapy on mRNA and miRNA expression networks in polyarticular JIA. Using exon and miRNA microarrays, we studied children with untreated active JIA (ADU, n = 35), children with active disease on therapy with methotrexate ± etanercept (ADT, n = 26), and children with inactive disease also on therapy (ID, n = 14). We compared the results to findings from healthy control children (HC, n = 35). We found substantial re-ordering of mRNA and miRNA expression networks after the initiation of therapy. Each disease state was associated with a distinct transcriptional profile, with the ADT state differing the most from HC, and ID more strongly resembling HC. Changes at the mRNA level were mirrored in changes in miRNA expression patterns. The analysis of the expression dynamics from differentially expressed genes across three disease states indicated that therapeutic response is a complex process. This process does not simply involve genes slowly correcting in a linear fashion over time. Computational modeling of miRNA and transcription factor (TF) co-regulatory networks demonstrated that combinational regulation of miRNA and TF might play an important role in dynamic transcriptome changes.


Assuntos
Artrite Juvenil/genética , Modelos Genéticos , Neutrófilos/fisiologia , Transcriptoma , Antirreumáticos/uso terapêutico , Artrite Juvenil/tratamento farmacológico , Criança , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Redes e Vias Metabólicas/genética , Metotrexato/uso terapêutico , MicroRNAs/metabolismo , Anotação de Sequência Molecular , RNA Mensageiro/metabolismo
15.
Cell Death Dis ; 9(5): 467, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29700294

RESUMO

Persistent vascular injury and degeneration in diabetes are attributed in part to defective reparatory function of angiogenic cells. Our recent work implicates endoplasmic reticulum (ER) stress in high-glucose-induced bone marrow (BM) progenitor dysfunction. Herein, we investigated the in vivo role of ER stress in angiogenic abnormalities of streptozotocin-induced diabetic mice. Our data demonstrate that ER stress markers and inflammatory gene expression in BM mononuclear cells and hematopoietic progenitor cells increase dynamically with disease progression. Increased CHOP and cleaved caspase- 3 levels were observed in BM--derived early outgrowth cells (EOCs) after 3 months of diabetes. Inhibition of ER stress by ex vivo or in vivo chemical chaperone treatment significantly improved the generation and migration of diabetic EOCs while reducing apoptosis of these cells. Chemical chaperone treatment also increased the number of circulating angiogenic cells in peripheral blood, alleviated BM pathology, and enhanced retinal vascular repair following ischemia/reperfusion in diabetic mice. Mechanistically, knockdown of CHOP alleviated high-glucose-induced EOC dysfunction and mitigated apoptosis, suggesting a pivotal role of CHOP in mediating ER stress-associated angiogenic cell injury in diabetes. Together, our study suggests that targeting ER signaling may provide a promising and novel approach to enhancing angiogenic function in diabetes.


Assuntos
Apoptose , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Estresse do Retículo Endoplasmático , Neovascularização Fisiológica , Células-Tronco/metabolismo , Animais , Caspase 3/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Masculino , Camundongos , Células-Tronco/patologia , Fator de Transcrição CHOP/metabolismo
16.
J Pharmacol Exp Ther ; 365(3): 494-506, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29602831

RESUMO

Noncoding RNAs (ncRNAs) produced in live cells may better reflect intracellular ncRNAs for research and therapy. Attempts were made to produce biologic ncRNAs, but at low yield or success rate. Here we first report a new ncRNA bioengineering technology using more stable ncRNA carrier (nCAR) containing a pre-miR-34a derivative identified by rational design and experimental validation. This approach offered a remarkable higher level expression (40%-80% of total RNAs) of recombinant ncRNAs in bacteria and gave an 80% success rate (33 of 42 ncRNAs). New FPLC and spin-column based methods were also developed for large- and small-scale purification of milligrams and micrograms of recombinant ncRNAs from half liter and milliliters of bacterial culture, respectively. We then used two bioengineered nCAR/miRNAs to demonstrate the selective release of target miRNAs into human cells, which were revealed to be Dicer dependent (miR-34a-5p) or independent (miR-124a-3p), and subsequent changes of miRNome and transcriptome profiles. miRNA enrichment analyses of altered transcriptome confirmed the specificity of nCAR/miRNAs in target gene regulation. Furthermore, nCAR assembled miR-34a-5p and miR-124-3p were active in suppressing human lung carcinoma cell proliferation through modulation of target gene expression (e.g., cMET and CDK6 for miR-34a-5p; STAT3 and ABCC4 for miR-124-3p). In addition, bioengineered miRNA molecules were effective in controlling metastatic lung xenograft progression, as demonstrated by live animal and ex vivo lung tissue bioluminescent imaging as well as histopathological examination. This novel ncRNA bioengineering platform can be easily adapted to produce various ncRNA molecules, and biologic ncRNAs hold the promise as new cancer therapeutics.


Assuntos
Perfilação da Expressão Gênica , Engenharia Genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , MicroRNAs/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica , Neoplasias Pulmonares/patologia , Camundongos
17.
Nat Neurosci ; 21(4): 564-575, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29531362

RESUMO

Haploinsufficiency of the SHANK3 gene is causally linked to autism spectrum disorder (ASD), and ASD-associated genes are also enriched for chromatin remodelers. Here we found that brief treatment with romidepsin, a highly potent class I histone deacetylase (HDAC) inhibitor, alleviated social deficits in Shank3-deficient mice, which persisted for ~3 weeks. HDAC2 transcription was upregulated in these mice, and knockdown of HDAC2 in prefrontal cortex also rescued their social deficits. Nuclear localization of ß-catenin, a Shank3-binding protein that regulates cell adhesion and transcription, was increased in Shank3-deficient mice, which induced HDAC2 upregulation and social deficits. At the downstream molecular level, romidepsin treatment elevated the expression and histone acetylation of Grin2a and actin-regulatory genes and restored NMDA-receptor function and actin filaments in Shank3-deficient mice. Taken together, these findings highlight an epigenetic mechanism underlying social deficits linked to Shank3 deficiency, which may suggest potential therapeutic strategies for ASD patients bearing SHANK3 mutations.


Assuntos
Transtorno Autístico/complicações , Regulação da Expressão Gênica/genética , Histona Desacetilases/metabolismo , Proteínas do Tecido Nervoso/deficiência , Transtornos do Comportamento Social , Animais , Transtorno Autístico/genética , Depsipeptídeos/uso terapêutico , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Asseio Animal/efeitos dos fármacos , Asseio Animal/fisiologia , Inibidores de Histona Desacetilases/uso terapêutico , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/patologia , Desempenho Psicomotor/efeitos dos fármacos , Transtornos do Comportamento Social/enzimologia , Transtornos do Comportamento Social/etiologia , Transtornos do Comportamento Social/terapia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética
18.
Aging Dis ; 8(2): 215-227, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28400987

RESUMO

This pilot study examined the status of the master iron regulatory peptide, hepcidin, and peripheral related iron parameters in Alzheimer's disease (AD) and mild cognitive impairment patients, and evaluated the relationship between iron dyshomeostasis and amyloid-beta (Aß), cognitive assessment tests, neuroimaging and clinical data. Frozen serum samples from the Oregon Tissue Bank were used to measure serum levels of hepcidin, ferritin, Aß40, Aß42 using enzyme-linked immunosorbent assay. Serum transferrin levels were determined indirectly as total iron binding capacity, serum iron was measured and the percent saturation of transferrin calculated. The study variables were correlated with the patients' existing cognitive assessment tests, neuroimaging, and clinical data. Hepcidin, and iron-related proteins tended to be higher in AD patients than controls, reaching statistical significance for ferritin, whereas Aß40, Aß42 serum levels tended to be lower. Patients with pure AD had three times higher serum hepcidin levels than controls; gender differences in hepcidin and iron-related proteins were observed. Patient stratification based on clinical dementia rating-sum of boxes revealed significantly higher levels of iron and iron-related proteins in AD patients in the upper 50% as compared to controls, suggesting that iron dyshomeostasis worsens as cognitive impairment increases. Unlike Aß peptides, iron and iron-related proteins showed significant association with cognitive assessment tests, neuroimaging, and clinical data. Hepcidin and iron-related proteins comprise a group of serum biomarkers that relate to AD diagnosis and AD disease progression. Future studies should determine whether strategies targeted to diminishing hepcidin synthesis/secretion and improving iron homeostasis could have a beneficial impact on AD progression.

19.
Sci Rep ; 6: 27453, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27271962

RESUMO

NIH projects such as ENCODE and Roadmap Epigenomics have revealed surprising complexity in the transcriptomes of mammalian cells. In this study, we explored transcriptional complexity in human neutrophils, cells generally regarded as nonspecific in their functions and responses. We studied distinct human disease phenotypes and found that, at the gene, gene isoform, and miRNA level, neutrophils exhibit considerable specificity in their transcriptomes. Thus, even cells whose responses are considered non-specific show tailoring of their transcriptional repertoire toward specific physiologic or pathologic contexts. We also found that miRNAs had a global impact on neutrophil transcriptome and are associated with innate immunity in juvenile idiopathic arthritis (JIA). These findings have important implications for our understanding of the link between genes, non-coding transcripts and disease phenotypes.


Assuntos
Artrite Juvenil/genética , Neutrófilos/metabolismo , Transcriptoma , Adolescente , Estudos de Casos e Controles , Éxons , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética
20.
Nat Commun ; 6: 10100, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26639555

RESUMO

The direct conversion of fibroblasts to induced dopaminergic (iDA) neurons and other cell types demonstrates the plasticity of cell fate. The low efficiency of these relatively fast conversions suggests that kinetic barriers exist to safeguard cell-type identity. Here we show that suppression of p53, in conjunction with cell cycle arrest at G1 and appropriate extracellular environment, markedly increase the efficiency in the transdifferentiation of human fibroblasts to iDA neurons by Ascl1, Nurr1, Lmx1a and miR124. The conversion is dependent on Tet1, as G1 arrest, p53 knockdown or expression of the reprogramming factors induces Tet1 synergistically. Tet1 knockdown abolishes the transdifferentiation while its overexpression enhances the conversion. The iDA neurons express markers for midbrain DA neurons and have active dopaminergic transmission. Our results suggest that overcoming these kinetic barriers may enable highly efficient epigenetic reprogramming in general and will generate patient-specific midbrain DA neurons for Parkinson's disease research and therapy.


Assuntos
Transdiferenciação Celular/genética , Neurônios Dopaminérgicos/citologia , Fibroblastos/citologia , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Reprogramação Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Mesencéfalo , MicroRNAs/genética , Oxigenases de Função Mista , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA