Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 155: 113707, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36122520

RESUMO

Due to the complexity and particularity of cancer cell microenvironments, redox responsive drug delivery systems (DDSs) for cancer therapy have been extensively explored. Compared with widely reported cancer treatment systems based on disulfide bonds, diselenide bonds have better redox properties and greater anticancer efficiency. In this review, the significance and application of diselenide bonds in DDSs are summarized, and the stimulation sensitivity of diselenide bonds is comprehensively reported. The potential and prospects for the application of diselenide bonds in next-generation anticancer drug treatment systems are extensively discussed.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/uso terapêutico , Oxirredução , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Dissulfetos , Portadores de Fármacos/química , Microambiente Tumoral
2.
Chemosphere ; 247: 125916, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069716

RESUMO

Arsenic (As) and cadmium (Cd) are ubiquitous in the environment and they are both toxic to humans. When present in soils, they can enter food chain, thereby threatening human health. Water spinach (Ipomoea aquatica) is an important leafy vegetable, which is widely consumed in Asian countries. However, it is efficient in taking up As and Cd from soils and accumulating them in the edible parts. Therefore, it is of significance to reduce its As and Cd content, especially in contaminated soil. In this study, pot experiments were conducted to investigate the ability of As-hyperaccumulator Pteris vittata in reducing As and Cd uptake by water spinach under different phosphorus treatments. P. vittata was grown for 60 d in a contaminated-soil amended with P fertilizer (+P) or phosphate rock (+PR), followed by water spinach cultivation for another 30 d. Plant biomass, As and Cd contents in plants and soils, and soil pH were analyzed. We found that, P. vittata coupled with PR decreased the As concentration in water spinach shoots by 42%, probably due to As uptake by P. vittata. Moreover, P. vittata decreased the Cd accumulation in water spinach by 24-44%, probably due to pH increase of 0.47-0.61 after P. vittata cultivation. Taking together, the results showed that P. vittata coupled with PR decreased the As and Cd content in water spinach, which is of significance for improving food safety and protecting human health.


Assuntos
Arsênio/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Ipomoea/metabolismo , Fosfatos/química , Pteris/química , Poluentes do Solo/metabolismo , Arsênio/análise , Biomassa , Cádmio/análise , Fertilizantes , Fósforo , Folhas de Planta/química , Solo/química , Poluentes do Solo/análise , Verduras , Água
3.
Environ Pollut ; 255(Pt 3): 113354, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31629223

RESUMO

Agricultural soil is one of the main sink for both heavy metals and nanomaterials (NMs). Whether NMs can impact heavy metals uptake or bioaccumulation in plants is unknown. Here, cucumber plants were cultivated in a multi-heavy metals contaminated soil amended with four types of NMs (SiO2, TiO2, ZnS and MoS2) separately for four weeks. Physiological and biochemical parameters were determined to investigate the impact of NMs on plant growth. Inductively coupled plasma mass spectrometry was employed to determine the metal content in plants. Results showed that none of the tested NMs impacted plants biomass, but all the NMs showed different degrees of reduction in heavy metals bioaccumulation in plant roots, stems and leaves. However, four NMs showed different degrees of reduction in macro and micro nutrients uptake. MoS2 decreased the bioaccumulation of heavy metals (As, Cd, Cr, Cu, Ni, Al, Ti and Pb) for 36.4-60.6% and nutrients (Mg, Fe, K, Si and Mn) for 40.1%-50.1% in roots. Exposure to MoS2 NMs also significantly increased 23.4% of Si in leaves, 205.6% and 83.9% of Mo in roots and stems, respectively. In general, the results of this study showed promising potential for NMs to reduce uptake of heavy metals in crop plants, especially MoS2 NMs. However, the negative impacts of perturbing nutrients uptake should be paid attention as well.


Assuntos
Cucumis sativus/química , Metais Pesados/análise , Nanoestruturas/análise , Poluentes do Solo/análise , Agricultura , Biomassa , Cucumis sativus/crescimento & desenvolvimento , Óxidos/análise , Desenvolvimento Vegetal , Raízes de Plantas/química , Dióxido de Silício/análise , Solo/química , Sulfetos/análise
4.
Environ Sci Technol ; 53(17): 10062-10069, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31369709

RESUMO

Rice (Oryza sativa) is a major food crop in the world, feeding half of the world's population. However, rice is efficient in taking up toxic metalloid arsenic (As), adversely impacting human health. Among different As species, inorganic As is more toxic than organic As. Thus, it is important to decrease inorganic As in rice to reduce human exposure from the food chain. The arsenite (AsIII) antiporter gene PvACR3;1 from As-hyperaccumulator Pteris vittata decreases shoot As accumulation when heterologously expressed in plants. In this study, three homozygous transgenic lines (L2, L4, and L7) of T3 generation were obtained after transforming PvACR3;1 into rice. At 5 µM of AsIII, PvACR3;1 transgenic rice accumulated 127%-205% higher As in the roots, with lower As translocation than wild type (WT) plants. In addition, at 20 µM of AsV, the transgenic rice showed similar results, indicating that expressing PvACR3;1 increased As retention in the roots from both AsIII and AsV. Furthermore, PvACR3;1 transgenic rice plants were grown in As-contaminated soils under flooded conditions. PvACR3;1 decreased As accumulations in transgenic rice shoots by 72%-83% without impacting nutrient minerals (Mn, Zn, and Cu). In addition, not only total As in unhusked rice grain of PvACR3;1 transgenic lines were decreased by 28%-39%, but also inorganic As was 26%-46% lower. Taken together, the results showed that expressing PvACR3;1 effectively decreased both total As and inorganic As in rice grain, which is of significance to breed low-As rice for food safety and human health.


Assuntos
Arsênio , Arsenitos , Oryza , Pteris , Poluentes do Solo , Antiporters , Humanos , Raízes de Plantas
5.
Environ Sci Technol ; 51(18): 10387-10395, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28834681

RESUMO

Arsenic (As) is a toxic carcinogen so it is crucial to decrease As accumulation in crops to reduce its risk to human health. Arsenite (AsIII) antiporter ACR3 protein is critical for As metabolism in organisms, but it is lost in flowering plants. Here, a novel ACR3 gene from As-hyperaccumulator Pteris vittata, PvACR3;1, was cloned and expressed in Saccharomyces cerevisiae (yeast), Arabidopsis thaliana (model plant), and Nicotiana tabacum (tobacco). Yeast experiments showed that PvACR3;1 functioned as an AsIII-antiporter to mediate AsIII efflux to an external medium. At 5 µM AsIII, PvACR3;1 transgenic Arabidopsis accumulated 14-29% higher As in the roots and 55-61% lower As in the shoots compared to WT control, showing lower As translocation. Besides, transgenic tobacco under 5 µM AsIII or AsV also showed similar results, indicating that expressing PvACR3;1 gene increased As retention in plant roots. Moreover, observation of PvACR3;1-green fluorescent protein fusions in transgenic Arabidopsis showed that PvACR3;1 protein localized to the vacuolar membrane, indicating that PvACR3;1 mediated AsIII sequestration into vacuoles, consistent with increased root As. In addition, soil experiments showed ∼22% lower As in the shoots of transgenic tobacco than control. Thus, our study provides a potential strategy to limit As accumulation in plant shoots, representing the first report to decrease As translocation by sequestrating AsIII into vacuoles, shedding light on engineering low-As crops to improve food safety.


Assuntos
Arsênio/farmacocinética , Pteris , Poluentes do Solo/farmacocinética , Antiporters , Arsenitos , Raízes de Plantas , Brotos de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA