Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Water Res ; 265: 122265, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39173357

RESUMO

Removal of Mn(II) is an essential step for addressing water discoloration in water treatment utilities worldwide. However, conventional chlorination suffers from poor oxidation of Mn(II) due to its low homogeneous oxidation kinetics. This study explored the oxidation capability of a new chemical dosing strategy employing peroxymonosulfate (PMS) to assist the chlorination process (PMS@Cl2) for effective Mn(II) oxidation. The study comprehensively explored both oxidation kinetics and underlying mechanisms associated with homogeneous and heterogeneous oxidation within the PMS@Cl2 system. At an [Mn(II)]0 of 1 mg/L, chlorination demonstrated inability in oxidizing Mn(II), with <10 % oxidation even at an elevated [Cl2] of 150 µM (∼10 mg/L). By contrast, PMS completely oxidized 100 % Mn(II) within a 30-minute reaction at a much lower [PMS] of 60 µM (kobs = 0.07 min-1 and t1/2 = 9 min), demonstrating its superior Mn(II) oxidation kinetics (over one order of magnitude faster than conventional chlorine). PMS@Cl2 exhibited an interesting synergistic benefit when combining a lower dose PMS with a higher routine dose Cl2 (loPMS@hiCl2), e.g. [PMS]:[Cl2] at 15:30 or 30:30 µM. Both conditions achieved 100 % Mn(II) oxidation, with even better values of kobs and t1/2 (0.16-0.17 min-1 and ∼4 min) relative to PMS alone at 60 µM. The synergic benefit of PMS@Cl2 was attributed to distinct functions played by PMS and Cl2 in both homogeneous and heterogeneous oxidation processes. Reactive species identification excluded the possible involvement of SO4•-, OH•, or chlorine radicals in the homogeneous oxidation of the PMS@Cl2 system. Instead, the dominant species was O2•- radical generated during the reaction of Mn(II) and PMS. Furthermore, the heterogeneous oxidation emphasized the important role of combining Cl2 dosing, which demonstrated an increased reactivity and electron transfer with the Mn-O-Mn complex, surpassing PMS. Overall, heterogeneous oxidation accelerated the oxidation kinetics of the PMS@Cl2 system by 1.1-2 orders of magnitude relative to the homogeneous oxidation of Cl2 alone. We here demonstrated that PMS@Cl2 could offer a more efficient mean of soluble Mn(II) mitigation, achieved with a relatively low routine dose of oxidant in a short reaction period. The outcomes of this study would address the existing limitations of traditional chlorine oxidation, minimizing the trade-offs associated with high residual chlorine levels after treatments for soluble manganese-containing water.

2.
Chemosphere ; 355: 141835, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552799

RESUMO

This study provides insights regarding the selective metal leaching of brass in various tap water conditions, which benefits water utilities to predict the potential of metal released from brass water meters. The long-term time-dependent selective metal dissolution of brass with various ß phase fractions have not previously been investigated. In this study, a 201-d immersion experiment was carried out in low and high conductivity tap water (LCTW and HCTW, respectively). Three commercialized brass samples in different ß phase fractions (ß = 51%, ß = 43%, ß = 39%), named brass 51, brass 43, and brass 39, respectively, were used. The results showed that brass 51 had the most negative corrosion potential (-0.17 V) and the lowest polarization resistance (8.5 kΩ) compared to brass 43 and brass 39 (-0.04 V and 10.1-14.7 kΩ, respectively) in LCTW. This trend was verified by the 201-d immersion experiment in which brass 51 exhibited the highest zinc leaching rate (21-30 µg L-1 cm-2 d-1), followed by brass 43 and brass 39 (16-23 µg L-1 cm-2 d-1) in both waters. The leaching amounts of lead and copper were extremely low compared to zinc. In LCTW, the uniform corrosion (UC) mechanism dominated from day 1 to day 120. Afterwards, UC was replaced by the galvanic corrosion (GC) mechanism, with the selective leaching coefficient of Zn over Cu (SZn/Cu) increasing from 10 to 25 to 40-80. In HCTW, however, the SZn/Cu reached 300-1000, and the transition of UC to GC occurred earlier on day 30 due to the rapid formation of the ZnO layer on the brass surface that hindered the ion attack.


Assuntos
Cobre , Água , Chumbo , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA