Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(25): 30394-30401, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327481

RESUMO

The separation of CO2 from the industrial post-combustion flue gas is of great importance to reduce the increasingly serious greenhouse effect, yet highly challenging due to the extremely high stability, low cost, and high separation performance requirements for adsorbents under the practical operating conditions. Herein, we report a robust squarate-cobalt metal-organic framework (MOF), FJUT-3, featuring an ultra-small 1D square channel decorated with -OH groups, for CO2/N2 separation. Remarkably, FJUT-3 not only has excellent stability under harsh chemical conditions but also presents low-cost property for scale-up synthesis. Moreover, FJUT-3 shows excellent CO2 separation performance under various humid and temperature conditions confirmed by the transient breakthrough experiments, thus enabling FJUT-3 with adequate potentials for industrial CO2 capture and removal. The distinct CO2 adsorption mechanism is well elucidated by theoretical calculations, in which the hierarchical C···OCO2, C-O···CCO2, and O-H···OCO2 interactions play a vital synergistic role in the selective CO2 adsorption process.

2.
Inorg Chem ; 62(21): 8058-8063, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37172273

RESUMO

The development of metal-organic framework (MOF) adsorbents with a potential molecule sieving effect for CO2 capture and separation from flue gas is of critical importance for reducing the CO2 emissions to the atmosphere yet challenging. Herein, a cagelike MOF with a suitable cage window size falling between CO2 and N2 and the cavity has been constructed to evaluate its CO2/N2 separation performance. It is noteworthy that the introduction of coordinated dimethylamine (DMA) and N,N'-dimethylformamide (DMF) molecules not only significantly reduces the cage window size but also enhances the framework-CO2 interaction via C-H···O hydrogen bonds, as proven by molecular modeling, thus leading to an improved CO2 separation performance. Moreover, transient breakthrough experiments corroborate the efficient CO2/N2 separation, revealing that the introduction of DMA and DMF molecules plays a vital role in the separation of a CO2/N2 gas mixture.

3.
ACS Appl Mater Interfaces ; 14(43): 49171-49180, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36274230

RESUMO

Recently, soft actuators capable of deforming in predictable ways under external stimuli have attracted increasing attention by showing great potential in emerging industries. However, limited efforts are being spent on the untethered actuators with multistable deformations. Also, there is a lack of mechanically guiding design principles for multistable structures. Here, the patterned aluminum/polydimethylsiloxane (Al/PDMS)-laminated films with surface wrinkles are fabricated by magnetron sputtering the Al layer on the PDMS substrate. By tuning the geometric parameters and surface constraints of the patterned Al/PDMS-laminated films, a series of solvent-driven actuators with multiform stable configurations (such as monostable arc, multistable cylinder, and monostable/bistable spiral) are proposed. The deformation mechanism is revealed using a linear elastic theory. Combined with the finite element analysis method, the deformations of Al/PDMS-laminated films with different surface constraints and geometric configurations are visually predicted. Besides, we modulate the deformation of different parts of the Z-shaped actuators by tuning the surface constraints in different regions of the Z-shaped Al/PDMS bilayer films to achieve multiple stable deformations in a single actuator. The concept offers a huge design scope for reconfigurable soft robots. Finally, two bionic applications are proposed to demonstrate the practical applications of the soft solvent-driven actuator based on the patterned Al/PDMS films in artificial muscles and bionic robotics. This work provides a strategy for the design and fabrication of programmable and controllable soft actuators, laying the foundation for a wide range of applications in smart materials.

4.
Chem Sci ; 12(16): 5767-5773, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33936581

RESUMO

Despite their scarcity due to synthetic challenges, supertetrahedron-based metal-organic frameworks (MOFs) possess intriguing architectures, diverse functionalities, and superb properties that make them in-demand materials. Employing a new window-space-directed assembly strategy, a family of mesoporous zeolitic MOFs have been constructed herein from corner-shared supertetrahedra based on homometallic or heterometallic trimers [M3(OH/O)(COO)6] (M3 = Co3, Ni3 or Co2Ti). These MOFs consisted of close-packed truncated octahedral cages possessing a sodalite topology and large ß-cavity mesoporous cages (∼22 Å diameter) connected by ultramicroporous apertures (∼5.6 Å diameter). Notably, the supertetrahedron-based sodalite topology MOF combined with the Co2Ti trimer exhibited high thermal and chemical stability as well as the ability to efficiently separate acetylene (C2H2) from carbon dioxide (CO2).

5.
Mater Sci Eng C Mater Biol Appl ; 76: 1154-1165, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482481

RESUMO

The present study prepares novel Zr70+xAl5Fe15-xNb10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr2Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr75Al5Fe10Nb10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications.


Assuntos
Ligas/química , Materiais Biocompatíveis , Corrosão , Módulo de Elasticidade , Teste de Materiais , Oxirredução , Titânio
6.
Mater Sci Eng C Mater Biol Appl ; 66: 268-277, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27207063

RESUMO

In this study, the tribological behavior of a Ni-free Zr53Al16Co23·25Ag7.75 bulk metallic glass (BMG) was investigated in dry-sliding and simulated physiological media using ball-on-disk reciprocating friction. The effects of sliding load, speed, media and counterpart materials on the wear resistance of the Zr-Al-Co-Ag BMG were illustrated. Under dry-sliding in air, wear resistance of the Zr-based BMG decreases with increasing sliding load, and wear deterioration is controlled by oxidation and abrasive wear. With increasing sliding velocity, larger plastic deformation occurs on the surface of BMG due to the frictional heat. The BMG exhibits decreased wear resistance in 0.9% NaCl and phosphate buffer saline (PBS) solutions in comparison with that in air and deionized water, which is probably associated with tribocorrosion controlled by synergistic effects of abrasive and corrosive wear. The wear resistance of the Zr-based BMG against Si3N4 counterpart material is inferior to that against ZrO2, whereas the case is contrary to that against Al2O3. The effect of ceramic counterpart materials on the wear resistance of BMG is discussed based on their Young's modulus and fracture toughness.


Assuntos
Materiais Biocompatíveis/química , Vidro/química , Níquel/química , Zircônio/química , Ligas/química , Óxido de Alumínio/química , Corrosão , Técnicas Eletroquímicas , Eletrodos , Microscopia Eletrônica de Varredura , Oxirredução , Compostos de Silício/química , Difração de Raios X
7.
Mater Sci Eng C Mater Biol Appl ; 44: 400-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25280721

RESUMO

The present study designs and prepares Ni-free Zr60+xTi2.5Al10Fe12.5-xCu10Ag5 (at.%, x=0, 2.5, 5) bulk metallic glasses (BMGs) by copper mold casting for potential biomedical application. The effects of Zr content on the in vitro biocompatibility of the Zr-based BMGs are evaluated by investigating mechanical properties, bio-corrosion behavior, and cellular responses. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high notch toughness. Electrochemical measurements demonstrate that the Zr-based BMGs are corrosion resistant in a phosphate buffered saline solution. The bio-corrosion resistance of BMGs is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. Regular cell responses of mouse MC3T3-E1 cells, including cell adhesion and proliferation, are observed on the Zr-Ti-Al-Fe-Cu-Ag BMGs, which reveals their general biosafety. The high-Zr-based BMGs exhibit a higher cell proliferation activity in comparison with that of pure Zr and Ti-6Al-4V alloy. The effects of Zr content on the in vitro biocompatibility can be used to guide the future design of biocompatible Zr-based BMGs.


Assuntos
Materiais Biocompatíveis/química , Tecnologia Biomédica/métodos , Vidro/química , Zircônio/química , Células 3T3 , Ligas/química , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Corrosão , Módulo de Elasticidade , Camundongos , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA