Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Deliv ; 21(4): 553-572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38720439

RESUMO

INTRODUCTION: Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED: The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION: Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.


Assuntos
Administração Intranasal , Sistemas de Liberação de Medicamentos , Muco , Nanomedicina , Mucosa Nasal , Mucosa Nasal/metabolismo , Humanos , Animais , Muco/metabolismo , Permeabilidade , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Desenho de Fármacos , Nanopartículas
2.
mSphere ; 6(3): e0042821, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34047648

RESUMO

The PorX/PorY two-component system in the periodontal pathogen Porphyromonas gingivalis controls the expression of the por genes, encoding a type IX secretion system, and the sigP gene, encoding sigma factor σP. Previous results implied that PorX/PorY and σP formed a regulatory cascade because the PorX/PorY-activated σP enhanced the por genes, including porT, via binding to their promoters. We recently showed that PorX also binds to the por promoters, thus suggesting that an alternative mechanism is required for the PorX/PorY- and σP-governed expression. Here, our in vitro assays show the PorX response regulator binds to the sigP promoter at a sequence shared with the porT promoter and enhances its transcription, mediated by a reconstituted P. gingivalis RNA polymerase holoenzyme. Merely producing σP in trans fails to reverse the porT transcription in a porX mutant, which further argues against the action of the proposed regulatory cascade. An in vitro transcription assay using a reconstituted RNA polymerase-σP holoenzyme verifies the direct role of PorX in porT transcription, since transcription is enhanced by a pure PorX protein. Accordingly, we propose that the PorX/PorY system coordinates with σP to construct a coherent regulatory mechanism, known as the feedforward loop. Specifically, PorX will not only bind to the sigP promoter to stimulate the expression of σP, but also bind to the porT promoter to facilitate the RNA polymerase-σP-dependent transcription. Importantly, mutations at the porX and sigP genes attenuate bacterial virulence in a mouse model, demonstrating that this regulatory mechanism is essential for P. gingivalis pathogenesis. IMPORTANCE The anaerobic bacterium Porphyromonas gingivalis is not only the major etiologic agent for chronic periodontitis, but also prevalent in some common noncommunicable diseases such as cardiovascular disease, Alzheimer's disease, and rheumatoid arthritis. We present genetic, biochemical, and biological results to demonstrate that the PorX/PorY two-component system and sigma factor σP build a specific regulatory network to coordinately control transcription of the genes encoding the type IX secretion system, and perhaps also other virulence factors. Results in this study verify that the response regulator PorX stimulates the expression of the genes encoding both σP and the type IX secretion system by binding to their promoters. This study also provides evidence that σP, like the PorX/PorY system, contributes to P. gingivalis virulence in a mouse model.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/patogenicidade , Fator sigma/genética , Fatores de Virulência/genética , Animais , Infecções por Bacteroidaceae/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , RNA Ribossômico 16S , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA