Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 584: 216609, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211648

RESUMO

Cervical cancer (CC) patients with lymph node metastasis (LNM) have a poor prognosis. However, the molecular mechanism of LNM in CC is unclear, and there is no effective clinical treatment. Here, we found that 7-dehydrocholesterol reductase (DHCR7), an enzyme that catalyzes the last step of cholesterol synthesis, was upregulated in CC and closely related to LNM. Gain-of-function and loss-of-function experiments proved that DHCR7 promoted the invasion ability of CC cells and lymphangiogenesis in vitro and induced LNM in vivo. The LNM-promoting effect of DHCR7 was partly mediated by upregulating KN motif and ankyrin repeat domains 4 (KANK4) expression and subsequently activating the PI3K/AKT signaling pathway. Alternatively, DHCR7 promoted the secretion of vascular endothelial growth factor-C (VEGF-C), and thereby lymphangiogenesis. Interestingly, cholesterol reprogramming was needed for the DHCR7-mediated promotion of activation of the KANK4/PI3K/AKT axis, VEGF-C secretion, and subsequent LNM. Importantly, treatment with the DHCR7 inhibitors AY9944 and tamoxifen (TAM) significantly inhibited LNM of CC, suggesting the clinical application potential of DHCR7 inhibitors in CC. Collectively, our results uncover a novel molecular mechanism of LNM in CC and identify DHCR7 as a new potential therapeutic target.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Colesterol/metabolismo , Linfangiogênese , Metástase Linfática , Oxirredutases , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo do Útero/patologia , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
2.
J Adv Res ; 57: 163-180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37182685

RESUMO

INTRODUCTION: Human papillomavirus (HPV) integration can induce gene expression dysregulation by destroying higher-order chromatin structure in cervical cancer. OBJECTIVES: We established a 13q22 site-specific HPV16 gene knock-in cell model to interrogate the changes in chromatin structure at the initial stages of host cell malignant transformation. METHODS: We designed a CRISPR-Cas9 system with sgRNA targeting 13q22 site and constructed the HPV16 gene donor. Cells were cotransfected, screened, and fluorescence sorted. The whole genome sequencing (WGS) was used to confirm the precise HPV16 gene integration site. Western blot and qRT-PCR were used to measure gene expression. In vitro and in vivo analysis were performed to estimate the tumorigenic potential of the HPV16 knock-in cell model. Combined Hi-C, chromatin immunoprecipitation and RNA sequencing analyses revealed correlations between chromatin structure and gene expression. We performed a coimmunoprecipitation assay with anti-PIBF1 antibody to identify endogenous interacting proteins. In vivo analysis was used to determine the role of PIBF1 in the tumor growth of cervical cancer cells. RESULTS: We successfully established a 13q22 site-specific HPV16 gene knock-in cell model. We found that HPV integration promoted cell proliferation, invasion and stratified growth in vitro, and monoclonal proliferation in vivo. HPV integration divided the affected topologically associated domain (TAD) into two smaller domains, and the progesterone-induced blocking factor 1 (PIBF1) gene near the integration site was upregulated, although PIBF1 was not enriched at the domain boundary by CUT-Tag signal analysis. Moreover, PIBF1 was found to interact with the cohesin complex off chromatin to reduce contact domain formation by disrupting the cohesin ring-shaped structure, causing dysregulation of tumorigenesis-related genes. Xenograft experiments determined the role of PIBF1 in the proliferation in cervical cancer cells. CONCLUSION: We highlight that PIBF1, a potential chromatin structure regulatory protein, is activated by HPV integration, which provides new insights into HPV integration-driven cervical carcinogenesis.


Assuntos
Infecções por Papillomavirus , Proteínas da Gravidez , Neoplasias do Colo do Útero , Humanos , Feminino , Cromatina/genética , Papillomavirus Humano 16/genética , Neoplasias do Colo do Útero/genética , Infecções por Papillomavirus/genética , RNA Guia de Sistemas CRISPR-Cas , Carcinogênese , Células Epiteliais , Papillomavirus Humano , Expressão Gênica , Fatores Supressores Imunológicos
3.
J Transl Med ; 21(1): 611, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689699

RESUMO

BACKGROUND: Recurrent or metastatic cervical cancer (r/m CC) often has poor prognosis owing to its limited treatment options. The development of novel therapeutic strategies has been hindered by the lack of preclinical models that accurately reflect the biological and genomic heterogeneity of cervical cancer (CC). Herein, we aimed to establish a large patient-derived xenograft (PDX) biobank for CC, evaluate the consistency of the biologic indicators between PDX and primary tumor tissues of patients, and explore its utility for assessing patient's response to conventional and novel therapies. METHODS: Sixty-nine fresh CC tumor tissues were implanted directly into immunodeficient mice to establish PDX models. The concordance of the PDX models with their corresponding primary tumors (PTs) was compared based on the clinical pathological features, protein biomarker levels, and genomic features through hematoxylin & eosin staining, immunohistochemistry, and whole exome sequencing, respectively. Moreover, the clinical information of CC patients, RNA transcriptome and immune phenotyping of primary tumors were integrated to identify the potential parameters that could affect the success of xenograft engraftment. Subsequently, PDX model was evaluated for its capacity to mirror patient's response to chemotherapy. Finally, PDX model and PDX-derived organoid (PDXO) were utilized to evaluate the therapeutic efficacy of neratinib and adoptive cell therapy (ACT) combination strategy for CC patients with human epidermal growth factor receptor 2 (HER2) mutation. RESULTS: We established a PDX biobank for CC with a success rate of 63.8% (44/69). The primary features of established PDX tumors, including clinicopathological features, the expression levels of protein biomarkers including Ki67, α-smooth muscle actin, and p16, and genomics, were highly consistent with their PTs. Furthermore, xenograft engraftment was likely influenced by the primary tumor size, the presence of follicular helper T cells and the expression of cell adhesion-related genes in primary tumor tissue. The CC derived PDX models were capable of recapitulating the patient's response to chemotherapy. In a PDX model, a novel therapeutic strategy, the combination of ACT and neratinib, was shown to effectively inhibit the growth of PDX tumors derived from CC patients with HER2-mutation. CONCLUSIONS: We established by far the largest PDX biobank with a high engraftment rate for CC that preserves the histopathological and genetic characteristics of patient's biopsy samples, recapitulates patient's response to conventional therapy, and is capable of evaluating the efficacy of novel therapeutic modalities for CC.


Assuntos
Neoplasias do Colo do Útero , Humanos , Animais , Camundongos , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/terapia , Xenoenxertos , Recidiva Local de Neoplasia , Adesão Celular , Modelos Animais de Doenças
4.
J Cancer ; 13(6): 1882-1894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399723

RESUMO

To investigate the important roles of the cancer-promoting long non-coding RNAs (lncRNAs) in cervical cancer, the up-regulated lncRNAs and prognostic analysis were identified through Lnc2Cancer and Lncar. LncRNA-regulated miRNA and miRNA-target mRNA were analyzed based on starBase v2.0 and miTarbase to predict the lncRNA-miRNA-mRNA ceRNA network. Based on the above findings, the abnormally expressed histocompatibility leukocyte antigen complex P5 (HCP5) was identified in 31 cervical cancer patients through RT-qPCR. The stable cell lines were constructed to explore the effect of HCP5 on the promotion of cervical cancer and the regulatory role on the expression of miR-216a-5p and CDC42. Cell Counting Kit-8 (CCK8) assay, cell clone formation, and transwell assay were used to examine proliferation and migration ability of cervical cancer cells. The results displayed that the overexpression of HCP5 promoted cervical cancer cell proliferation and migration in vitro, and the elevated HCP5 can also promote tumor growth in vivo. Besides, RT-qPCR and western blot assay revealed that elevated HCP5 suppressed miR-216a-5p expression and then up-regulated the expression of CDC42. In contrast, knocking down HCP5 resulted in increased expression of miR-216a-5p and then downregulated the expression of CDC42. Rescue experiments also demonstrated that miR-216a-5p could in part intercept in promotion impact caused by HCP5 on cervical cancer cells. Above all, HCP5, as an oncogene, can promote proliferation and migration ability of cervical cancer via the regulation of the miR-216a-5p/CDC42 axis.

5.
Transl Cancer Res ; 10(11): 4739-4755, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35116328

RESUMO

BACKGROUND: Glioblastoma (GBM) is an intracranial brain tumor characterized by a high final lethality rate and recurrence rate, and limited available therapies. With the development of high-throughput sequencing technology, the genomic and transcriptomic features of GBM have been fully characterized. Therefore, our study aimed to identify its underlying genetic mechanisms, thus facilitating the development of novel therapies for GBM. METHODS: Based on the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, differential expression of RNAs in GBM and control group was analyzed. After constructing the long noncoding RNA (lncRNA)-miRNA-mRNA regulatory network of GBM, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) were performed to analyze related key nodes and the lncRNAs interacting with them. Further univariate Cox regression was conducted to explore independent factors, and then multivariate Cox regression was performed to construct risk prediction models. RESULTS: We first constructed the lncRNA-miRNA-mRNA regulatory network of GBM and two effective prediction models that included 2 mRNAs [transcription factor 12 (TCF12) and discoidin, CUB and LCCL domain containing 2 (DCBLD2)] and 5 lncRNAs (C10orf25, LINC00343, HOXA transcript antisense RNA, myeloid-specific 1 (HOTAIRM1), FGF12 antisense RNA 2 (FGF12-AS2) and H19). Additionally, we identified several key molecules [TCF12, integrin ß3 (ITGB3), high mobility group AT-hook 2 (HMGA2), C10orf25 and LINC00336] closely associated with GBM prognosis. C10orf25/miR-218/DCBLD2 may be an important regulatory pathway in GBM. CONCLUSIONS: Key molecules (TCF12, ITGB3, HMGA2, C10orf25, LINC00336 and H19) that are independent prognostic factors may be possible biomarkers to further optimize GBM prognosis. Two effective prognostic risk models that include 2 mRNAs (TCF12 and DCBLD2) and 5 lncRNAs (C10orf25, LINC00343, HOTAIRM1, FGF12-AS2 and H19) were constructed. C10orf25/miR-218/DCBLD2 may be an important regulatory pathway associated with the pathogenesis of GBM. Our findings contribute to further understanding the pathogenesis of GBM and finding possible candidate genes for prognostic and therapeutic usage with GBM.

6.
Front Microbiol ; 10: 322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858839

RESUMO

Porcine epidemic diarrhea (PED) is a disease that has a devastating effect on livestock. Currently, most studies are focused on comparing gut microbiota of healthy piglets and piglets with PED, resulting in gut microbial populations related to dynamic change in diarrheal piglets being poorly understood. The current study analyzed the characteristics of gut microbiota in porcine epidemic diarrhea virus (PEDV)-infected piglets during the suckling transition stage. Fresh fecal samples were collected from 1 to 3-week-old healthy piglets (n = 20) and PEDV infected piglets (n = 18) from the same swine farm. Total DNA was extracted from each sample and the V3-V4 hypervariable region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq platform. Statistically significant differences were observed in bacterial diversity and richness between the healthy and diarrheal piglets. Principal coordinates analysis (PCoA) showed structural segregation between diseased and healthy groups, as well as among 3 different age groups. The abundance of Escherichia-Shigella, Enterococcus, Fusobacterium, and Veillonella increased due to dysbiosis induced by PEDV infection. Notably, there was a remarkable age-related increase in Fusobacterium and Veillonella in diarrheal piglets. Certain SCFA-producing bacteria, such as Ruminococcaceae_UCG-002, Butyricimonas, and Alistipes, were shared by all healthy piglets, but were not identified in various age groups of diarrheal piglets. In addition, significant differences were observed between clusters of orthologous groups (COG) functional categories of healthy and PEDV-infected piglets. Our findings demonstrated that PEDV infection caused severe perturbations in porcine gut microbiota. Therefore, regulating gut microbiota in an age-related manner may be a promising method for the prevention or treatment of PEDV.

7.
Front Microbiol ; 9: 3218, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627125

RESUMO

Porcine respiratory disease (PRD) is responsible for severe economic losses in the swine industry worldwide. Our objective was to characterize the oropharyngeal microbiota of suckling piglets and compare the microbiota of healthy piglets and piglets with PRD. Oropharyngeal swabs were collected from healthy (Healthy_A, n = 6; Healthy_B, n = 4) and diseased (PRD_A, n = 18; PRD_B, n = 5) piglets at 2-3 weeks of age from two swine farms in Guangdong province, China. Total DNA was extracted from each sample and the V3-V4 hypervariable region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq platform. No statistically significant differences were observed in bacterial diversity and richness between the healthy and PRD groups in the two farms except for Shannon index in farm A. Principal coordinates analysis (PCoA) showed structural segregation between diseased and healthy groups and between groups of different farms. Among all samples, the phyla Firmicutes, Proteobacteria, and Bacteroidetes were predominant. At the genus level, Streptococcus, Lactobacillus, and Actinobacillus were the core genera in the oropharynx of healthy piglets from the two farms. Significant differences in bacterial taxa were found when the microbiota was compared regarding the health status. In farm A, the percentages of Moraxella and Veillonella were higher in the PRD group, while only Porphyromonas was significantly increased in the PRD group in farm B (p < 0.05). Compared to PRD groups, statistically significant predominance of Lactobacillus was observed in the healthy groups from both farms (p < 0.05). Our findings revealed that Moraxella, Veillonella, and Porphyromonas may play a potential role in PRD and Lactobacillus may have a protective role against respiratory diseases.

8.
ACS Appl Mater Interfaces ; 9(15): 13415-13421, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28375606

RESUMO

A new fluorescent polyimide covalent organic framework (PI-COF) has been successfully synthesized through solvothermal route using tetra(4-aminophenyl) porphyrin and perylenetracarboxylic dianhydride, which possesses porous crystalline and excellent thermal stability (>500 °C). Furthermore, few-layered PI covalent organic nanosheets (PI-CONs) can be easily obtained from the fluorescent PI-COF through a facile liquid phase exfoliation approach, which were confirmed by atomic force microscopy and transmission electron microscopy analysis. It is interesting that the fluorescent intensity of PI-CONs is obviously enhanced relative to that of PI-COF. The PI-CONs have been successfully utilized as an efficient fluorescent probe for the highly sensitive and selective detection of 2,4,6-trinitrophenol (TNP). The mechanism might be attributed to the combination of electron transfer and inner filter effect based on DFT calculations and spectral overlap data. The system exhibits a good linear response toward TNP over the range from 0.5 to 10 µM with a detection limit of 0.25 µM.

9.
Rev Sci Instrum ; 88(2): 024101, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28249523

RESUMO

The temperature distribution, microwave absorption efficiency, and dielectric properties of a copper (ii) oxide (CuO) pellet heated by microwave irradiation were investigated for use in developing a single-mode-type microwave heating thermogravimetry apparatus. The validity of the apparatus was confirmed by comparing the measured data with the results of numerical simulations. The dielectric properties and error margins of other parameters estimated using the apparatus were also examined. The temperature distribution of the CuO pellet was observed to decrease monotonously on moving from the outlet to the inlet side of the apparatus. A three-dimensional numerical simulation of the electromagnetic field accurately reproduced this temperature distribution, suggesting the one-way movement of microwaves in the single-mode-type microwave apparatus. The numerically determined dependency of the CuO absorption efficiency was also found to be in very good agreement with published data. The same was the case with the permittivity loss of the CuO at various temperatures, as estimated from the measured microwave absorption efficiency. However, a larger error was observed in the estimation of the permittivity loss of a material with a lower microwave absorption efficiency, which was apparently due to the measurement error of the absorption efficiency of such a material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA