Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 70: 103065, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340636

RESUMO

Oxidative stress (OS) and disruption of proteostasis caused by aggregated proteins are the primary causes of cell death in various diseases. Selenopeptides have shown the potential to control OS and alleviate inflammatory damage, suggesting promising therapeutic applications. However, their potential function in inhibiting proteotoxicity is not yet fully understood. To address this gap in knowledge, this study aimed to investigate the effects and underlying mechanisms of the selenopeptide VPRKL(Se)M on amyloid ß protein (Aß) toxicity in transgenic Caenorhabditis elegans. The results revealed that supplementation with VPRKL(Se)M can alleviate Aß-induced toxic effects in the transgenic C. elegans model. Moreover, the addition of VPRKL(Se)M inhibited the Aß aggregates formation, reduced the reactive oxygen species (ROS) levels, and ameliorated the overall proteostasis. Importantly, we found that the inhibitory effects of VPRKL(Se)M on Aß toxicity and activation of the unfolded protein are dependent on skinhead-1 (SKN-1). These findings suggested that VPRKL(Se)M is a potential bioactive agent for modulating SKN-1, which subsequently improves proteostasis and reduces OS. Collectively, the findings from the current study suggests VPRKL(Se)M may play a critical role in preventing protein disorder and related diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Cordyceps , Animais , Caenorhabditis elegans/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cordyceps/metabolismo , Animais Geneticamente Modificados , Estresse Oxidativo
2.
Food Chem X ; 19: 100788, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780281

RESUMO

This study aimed to compare the nutritive value and obesity prevention of ordinary Cordyceps militaris (CM) and selenium-enriched CM (SeCM). The results indicated that Se enrichment significantly increased the total carbohydrate and soluble dietary fiber content, while the protein and insoluble dietary fiber content decreased. Although the fat content was not affected, the medium and long-chain fatty acids content significantly changed. Moreover, Se enrichment significantly elevated the secondary metabolites belonging to terpenoids and alkaloids, which are linked with the enhanced biosynthesis of secondary metabolites. Both CM and SeCM reduced body weight, adipose accumulation, impaired glucose tolerance, and lipid levels in high-fat diet (HFD)-fed mice, and there was no significant difference between them. Network pharmacological analysis revealed that dietary CM and SeCM prevented HFD-induced obesity and associated metabolic diseases with multi-ingredients acting on multi-targets. Overall, Se enrichment improved the nutritive value of CM without altering its role in preventing obesity.

3.
J Agric Food Chem ; 71(32): 12203-12215, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530172

RESUMO

Selenopeptides are promising candidates for intervening in neuroinflammation; however, the key role of selenium (Se) in selenopeptides remains poorly understood. To address this gap, we compared the neuroprotective effects of selenopeptide Val-Pro-Arg-Lys-Leu-SeMet (namely, Se-P1) and its native peptide Val-Pro-Arg-Lys-Leu-Met (namely, P1). Our results demonstrate that Se-P1 treatment exhibits superior antioxidant and antineuroinflammatory effects in PC12 cells and lipopolysaccharide (LPS)-injured mice compared to P1. Moreover, the administration of Se-P1 and P1 resulted in a shift in the gut microbiota composition. Notably, during LPS-induced injury, Se-P1 treatment demonstrated greater stability in maintaining gut microbiota composition compared to P1 treatment. Specifically, Se-P1 may have a positive impact on gut microbiota dysbiosis by modulating inflammatory-related bacteria such as enhancing Lactobacillus abundance while reducing that of Lachnospiraceae_NK4A136_group. Furthermore, the alteration of metabolites induced by Se-P1 treatment exhibited a significant correlation with gut microbiota, subsequently modulating the inflammatory-related metabolic pathways including histidine metabolism, lysine degradation, and purine metabolism. These findings suggest that organic Se contributes to the bioactivities of Se-P1 in mitigating neuroinflammation in LPS-injured mice compared to P1. These findings hold significant value for the development of potential preventive or therapeutic strategies against neurodegenerative diseases and introduce novel concepts in selenopeptide nutrition and supplementation recommendations.


Assuntos
Microbioma Gastrointestinal , Fragmentos de Peptídeos , Animais , Camundongos , Sequência de Aminoácidos , Lipopolissacarídeos/efeitos adversos , Doenças Neuroinflamatórias , Neuroproteção , Peptídeos
4.
Crit Rev Food Sci Nutr ; : 1-14, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36728929

RESUMO

Dysfunctional autophagy induced by excessive reactive oxygen species (ROS) load and inflammation accelerates the development of Alzheimer's disease (AD). Recently, there has been an increasing interest in selenium-enriched ingredients (SEIs), such as selenoproteins, selenoamino acids and selenosugars, which could improve AD through antioxidant and anti-inflammation, as well as autophagy modulating effects. This review indicates that SEIs eliminate excessive ROS by activating the nuclear translocation of nuclear factor erythroid2-related factor 2 (Nrf2) and alleviate inflammation by inhibiting the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, they can activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and subsequently promote amyloid beta (Aß) clearance and reduce memory impairments. SEIs are ubiquitous in many plants and microorganisms, such as Brassicaceae vegetables, yeast, and mushroom. Enzymatic hydrolysis, as well as physical processing, such as thermal, high pressure and microwave treatment, are the main techniques to modify the properties of dietary selenium. This work highlights the fact that SEIs can inhibit inflammation and oxidative stress and provides evidence that supports the potential use of these dietary materials to be a novel strategy for improving AD.

5.
Phytochemistry ; 204: 113429, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36096269

RESUMO

Oxidative stress (OS) is created by an imbalance between reactive oxygen species and antioxidant levels. OS promotes inflammation and is associated with many diseases, such as neurodegenerative disorders, diabetes, and cardiovascular disease. Nrf2 and NF-κB are critical in the cellular defence against OS and the regulators of inflammatory responses, respectively. Recent studies revealed that the Nrf2 signalling pathway interacts with the NF-κB signalling pathway in OS. More importantly, many natural compounds have long been recognized to ameliorate OS and inflammation via the Nrf2 and/or NF-κB signalling pathway. Thus, we briefly overview the potential crosstalk between Nrf2 and NF-κB and the upstream regulators of Nrf2 and review the literature on the antioxidant and anti-inflammatory effects of dietary phytochemicals (DPs) that can activate these defence systems. The aim is to provide evidence for the development of DPs into functional food for the regulation of the Nrf2/NF-κB signalling pathway by upstream regulators of Nrf2.

6.
Food Res Int ; 157: 111197, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761521

RESUMO

Improved gut microbes and nutritious metabolites have been considered as the mediators of health benefits from indigestible polysaccharides, but their role in the anti-obesity effect of polysaccharides from Cordyceps militaris (CMP) remains elusive. This study aims to explore the potential mediators of the anti-obesity effects of CMP in high-fat diet (HFD)-fed mice using 16S rRNA sequencing and untargeted metabolomics analysis. The results showed that CMP supplementation in HFD-fed mice reduced body weight, fat accumulation, pro-inflammatory cytokine levels, and impaired glucose tolerance as well as gut barrier. Moreover, the CMP reversed the HFD-induced gut microbiota dysbiosis, as indicated by the elevated population of Alloprevotella, Parabacteroides, Butyricimonas, and Alistipes; and decreased population of Negativebacillus, in addition to altered levels of metabolites, such as brassicasterol and 4'-O-methylkanzonol W. Notably, CMP prevented obesity in association with the altered gut microbes and metabolites. These findings suggest that CMP may serve as a potential prebiotic agent to modulate specific gut microbes and related metabolites, which play a critical role in its preventing obesity-related diseases.


Assuntos
Cordyceps , Microbioma Gastrointestinal , Animais , Camundongos , Bacteroidetes , Dieta Hiperlipídica/efeitos adversos , Obesidade/induzido quimicamente , Obesidade/prevenção & controle , Polissacarídeos/farmacologia , RNA Ribossômico 16S/genética
8.
Int J Biol Macromol ; 209(Pt A): 1430-1438, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35460750

RESUMO

Polysaccharide from Agrocybe cylindracea (ACP) has been demonstrated with various health benefits, but its anti-obesity effect and underlying mechanisms remain poorly understood. This study aimed to investigate the beneficial effects of ACP in high-fat diet (HFD)-induced obese mice by targeting gut microbiota and metabolites. 9-week ACP supplementation in HFD-fed mice reduced body weight, adipose accumulation, impaired insulin resistance, lipid levels, and liver injuries, which were negatively correlated to the pro-inflammatory factors, particularly tumor necrosis factor-alpha (TNF-α) and interleukin- 6 (IL-6). Moreover, ACP not only restored HFD-induced gut disorder, as indicated by the depletion of Desulfovibrio and Oscillibacter and the enrichment of the Bacteroides, Parabacteroides, Butyricimonas, and Dubosiella, but also positively regulated gut metabolites such as solavetivone and N-acetylneuraminic acid. Spearman's correlation analysis revealed that the ACP-altered microbes and metabolites were highly correlated with inflammation-related indexes. Notably, ACP greatly lowered the obesity-related TNF-α- and IL-6-levels partially by reducing Desulfovibrio and increasing Parabacteroides abundances, together with the associated decrease of solavetivone level. These findings suggest that ACP may be used as a prebiotic agent to prevent diet-induced obesity, and target-specific microbiota and metabolites may have unique therapeutic promise for inflammation-related diseases.


Assuntos
Microbioma Gastrointestinal , Obesidade , Polissacarídeos , Agrocybe , Animais , Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Interleucina-6 , Camundongos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Polissacarídeos/uso terapêutico , Fator de Necrose Tumoral alfa/farmacologia
9.
J Agric Food Chem ; 70(10): 3194-3206, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35238567

RESUMO

Increasing attention focuses on the relationship between neuroinflammation and Alzheimer's disease (AD). The reports on the microbiota-gut-brain axis reveal that the regulation by gut microbiota is an effective way to intervene in neuroinflammation-related AD. In this study, two novel selenium peptides (Se-Ps), VPRKL(Se)M (Se-P1) and RYNA(Se)MNDYT (Se-P2), with neuroprotection effects were obtained from Se-enriched Cordyceps militaris. Se-P1 and Se-P2 pre-protection led to a 30 and 33% increase in the PC-12 cell viability compared to the damage group, respectively. Moreover, Se-Ps exhibited a significant pre-protection against LPS-induced inflammatory and oxidative stress in the colon and brain by inhibiting the production of pro-inflammatory mediators (p < 0.05) and malondialdehyde, as well as promoting anti-inflammatory cytokine level and antioxidant enzyme activity (p < 0.05), which may alleviate the cognitive impairment in LPS-injured mice (p < 0.05). Se-Ps not only repaired the intestinal mucosa damage of LPS-injured mice but also had a positive effect on gut microbiota dysbacteriosis by increasing the abundance of Lactobacillus and Alistipes and decreasing the abundance of Akkermansia and Bacteroides. Collectively, the antioxidant, anti-inflammatory, and regulating properties on gut microflora of Se-Ps contribute to their neuroprotection, supporting that Se-Ps could be a promising dietary supplement in the prevention and/or treatment of AD.


Assuntos
Cordyceps , Microbioma Gastrointestinal , Selênio , Animais , Cordyceps/química , Disbiose/tratamento farmacológico , Lipopolissacarídeos/efeitos adversos , Camundongos , Doenças Neuroinflamatórias , Peptídeos/farmacologia , Selênio/química
10.
Mol Nutr Food Res ; 66(7): e2100897, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092163

RESUMO

SCOPE: Whole-food-based strategies to prevent metabolic diseases are growing interests. Agrocybe cylindracea (AC) is a major edible mushroom with high values of nutrition, but little is known about its health benefits as a portion of whole food. METHODS AND RESULTS: Diet-induced obese, C57BL/6J mice are fed an high-fat diet (HFD) with or without AC (3% or 5%, w/w in the diet) for 9 weeks. The results show that dietary AC reduced body weight, adipose accumulation, impairment of glucose tolerance, lipid levels, and liver injury in HFD-fed mice. Moreover, AC not only prevents HFD-induced gut disorder, as indicates by the enriched probiotic Bifidobacterium and reduced endotoxin-bearing Proteobacteria, but also improve the lipopolysaccharide (LPS) level and gut tissue structure. Fecal metabolites such as harmine and harmanine are also remarkably altered by AC. Spearman's correlation analysis reveals that the AC-altered microbes and metabolites are strongly correlated with obesity-related indexes. CONCLUSION: These findings suggest that dietary AC prevents HFD-induced obesity and its complications in association with modulating gut microbiota and associated fecal metabolites.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Agrocybe , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA