Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Cancer Res Clin Oncol ; 150(5): 284, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811379

RESUMO

PURPOSE: The study aims to investigate whether including the inflammation-related parameters would enhance the accuracy of a nomogram for local control (LC) prediction in lung cancer patients undergoing stereotactic body radiation therapy (SBRT). METHODS: 158 primary or metastatic lung cancer patients treated with SBRT were retrospectively analyzed. The clinical, dosimetric and inflammation-related parameters were collected for the Cox regression analysis. The ACPB model was constructed by employing the clinical and dosimetric factors. And the ACPBLN model was established by adding the inflammation-related factors to the ACPB model. The two models were compared in terms of ROC, Akaike Information Criterion (AIC), C-index, time-dependent AUC, continuous net reclassification index (NRI), integrated discrimination improvement (IDI), calibration plots and decision curve analysis (DCA). RESULTS: Multivariate Cox regression analysis revealed that six prognostic factors were independently associated with LC, including age, clinical stage, planning target volume (PTV) volume, BED of the prescribed dose (BEDPD), the lymphocyte count and neutrocyte count. The ACPBLN model performed better in AIC, bootstrap-corrected C-index, time-dependent AUC, NRI and IDI than the ACPB model. The calibration plots showed good consistency between the probabilities and observed values in the two models. The DCA curves showed that the ACPBLN nomogram had higher overall net benefit than the ACPB model across a majority of threshold probabilities. CONCLUSION: The inflammation-related parameters were associated with LC for lung cancer patients treated with SBRT. The inclusion of the inflammation-related parameters improved the predictive performance of the nomogram for LC prediction.


Assuntos
Inflamação , Neoplasias Pulmonares , Nomogramas , Radiocirurgia , Humanos , Radiocirurgia/métodos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Feminino , Masculino , Idoso , Estudos Retrospectivos , Pessoa de Meia-Idade , Inflamação/patologia , Idoso de 80 Anos ou mais , Prognóstico , Adulto
2.
J Cancer Res Clin Oncol ; 150(2): 34, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277078

RESUMO

PURPOSE: The study aims to develop and validate a combined model for predicting 3-year cancer-specific survival (CSS) in lung cancer patients treated with stereotactic body radiation therapy (SBRT) by integrating clinical and radiomic parameters. METHODS: Clinical data and pre-treatment CT images were collected from 102 patients treated with lung SBRT. Multivariate logistic regression and the least absolute shrinkage and selection operator were used to determine the clinical and radiomic factors associated with 3-year CSS. Three prediction models were developed using clinical factors, radiomic factors, and a combination of both. The performance of the models was assessed using receiver operating characteristic curve and calibration curve. A nomogram was also created to visualize the 3-year CSS prediction. RESULTS: With a 36-month follow-up, 40 patients (39.2%) died of lung cancer and 62 patients (60.8%) survived. Three clinical factors, including gender, clinical stage, and lymphocyte ratio, along with three radiomic features, were found to be independent factors correlated with 3-year CSS. The area under the curve values for the clinical, radiomic, and combined model were 0.839 (95% CI 0.735-0.914), 0.886 (95% CI 0.790-0.948), and 0.914 (95% CI 0.825-0.966) in the training cohort, and 0.757 (95% CI 0.580-0.887), 0.818 (95% CI 0.648-0.929), and 0.843 (95% CI 0.677-0.944) in the validation cohort, respectively. Additionally, the calibration curve demonstrated good calibration performance and the nomogram created from the combined model showed potential for clinical utility. CONCLUSION: A clinical-radiomic model was developed to predict the 3-year CSS for lung cancer patients treated with SBRT.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Humanos , Neoplasias Pulmonares/radioterapia , Radiômica , Calibragem , Morte
3.
Clin Lung Cancer ; 24(8): e323-e331.e2, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37648569

RESUMO

BACKGROUND: The study aims to identify the risk factors and develop a model for predicting grade ≥2 radiation pneumonitis (RP) for lung cancer patients treated with stereotactic body radiation therapy (SBRT). MATERIALS AND METHODS: Clinical data, dosimetric data, and laboratory biomarkers from 186 patients treated with lung SBRT were collected. Univariate and multivariate logistic regression were performed to determine the predictive factors for grade ≥2 RP. Three models were developed by using the clinical, dosimetric, and combined factors, respectively. RESULTS: With a median follow-up of 36 months, grade ≥2 RP was recorded in 13.4% of patients. On univariate logistic regression analysis, clinical factors of age and lung volume, dosimetric factors of treatment durations, fractional dose and V10, and laboratory biomarkers of neutrophil, PLT, PLR, and Hb levels were significantly associated with grade ≥2 RP. However, on multivariate analysis, only age, lung volume, fractional dose, V10, and Hb levels were independent factors. AUC values for the clinical, dosimetric, and combined models were 0.730 (95% CI, 0.660-0.793), 0.711 (95% CI, 0.641-0.775) and 0.830 (95% CI, 0.768-0.881), respectively. The combined model provided superior discriminative ability than the clinical and dosimetric models (P < .05). CONCLUSION: Age, lung volume, fractional dose, V10, and Hb levels were demonstrated to be significant factors associated with grade ≥2 RP for lung cancer patients after SBRT. A novel model combining clinical, dosimetric factors, and laboratory biomarkers improved predictive performance compared with the clinical and dosimetric model alone.


Assuntos
Neoplasias Pulmonares , Pneumonite por Radiação , Radiocirurgia , Humanos , Neoplasias Pulmonares/cirurgia , Pneumonite por Radiação/diagnóstico , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Radiocirurgia/efeitos adversos , Pulmão , Biomarcadores
4.
Front Oncol ; 12: 988859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387160

RESUMO

Purpose: To investigate the value of radiomics models based on CT at different phases (non-contrast-enhanced and contrast-enhanced images) in predicting lymph node (LN) metastasis in esophageal squamous cell carcinoma (ESCC). Methods and materials: Two hundred and seventy-four eligible patients with ESCC were divided into a training set (n =193) and a validation set (n =81). The least absolute shrinkage and selection operator algorithm (LASSO) was used to select radiomics features. The predictive models were constructed with radiomics features and clinical factors through multivariate logistic regression analysis. The predictive performance and clinical application value of the models were evaluated by area under receiver operating characteristic curve (AUC) and decision curve analysis (DCA). The Delong Test was used to evaluate the differences in AUC among models. Results: Sixteen and eighteen features were respectively selected from non-contrast-enhanced CT (NECT) and contrast-enhanced CT (CECT) images. The model established using only clinical factors (Model 1) has an AUC value of 0.655 (95%CI 0.552-0.759) with a sensitivity of 0.585, a specificity of 0.725 and an accuracy of 0.654. The models contained clinical factors with radiomics features of NECT or/and CECT (Model 2,3,4) have significantly improved prediction performance. The values of AUC of Model 2,3,4 were 0.766, 0.811 and 0.809, respectively. It also achieved a great AUC of 0.800 in the model built with only radiomics features derived from NECT and CECT (Model 5). DCA suggested the potential clinical benefit of model prediction of LN metastasis of ESCC. A comparison of the receiver operating characteristic (ROC) curves using the Delong test indicated that Models 2, 3, 4, and 5 were superior to Model 1(P< 0.05), and no difference was found among Model 2, 3, 4 and Model 5(P > 0.05). Conclusion: Radiomics models based on CT at different phases could accurately predict the lymph node metastasis in patients with ESCC, and their predictive efficiency was better than the clinical model based on tumor size criteria. NECT-based radiomics model could be a reasonable option for ESCC patients due to its lower price and availability for renal failure or allergic patients.

5.
Front Oncol ; 12: 863502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299750

RESUMO

Purpose: Stereotactic body radiation therapy (SBRT) is a standard treatment for early primary lung cancer patients. However, there are few simple models for predicting the clinical outcomes of these patients. Our study analyzed the clinical outcomes, identified the prognostic factors, and developed prediction nomogram models for these patients. Materials and Methods: We retrospectively analyzed 114 patients with primary lung cancer treated with SBRT from 2012 to 2020 at our institutions and assessed patient's clinical outcomes and levels of toxicity. Kaplan-Meier analysis with a log-rank test was used to generate the survival curve. The cut-off values of continuous factors were calculated with the X-tile tool. Potential independent prognostic factors for clinical outcomes were explored using cox regression analysis. Nomograms for clinical outcomes prediction were established with identified factors and assessed by calibration curves. Results: The median overall survival (OS) was 40.6 months, with 3-year OS, local recurrence free survival (LRFS), distant disease-free survival (DDFS) and progression free survival (PFS) of 56.3%, 61.3%, 72.9% and 35.8%, respectively, with grade 3 or higher toxicity rate of 7%. The cox regression analysis revealed that the clinical stage, immobilization device, and the prescription dose covering 95% of the target area (D95) were independent prognostic factors associated with OS. Moreover, the clinical stage, and immobilization device were independent prognostic factors of LRFS and PFS. The smoking status, hemoglobin (Hb) and immobilization device were significant prognostic factors for DDFS. The nomograms and calibration curves incorporating the above factors indicated good predictive accuracy. Conclusions: SBRT is effective and safe for primary lung cancer. The prognostic factors associated with OS, LRFS, DDFS and PFS are proposed, and the nomograms we proposed are suitable for clinical outcomes prediction.

6.
J Appl Clin Med Phys ; 22(5): 139-146, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33934511

RESUMO

PURPOSE: Our study aimed to improve the dosimetry of post modified radical mastectomy intensity-modulated radiotherapy (PMRM-IMRT) for left-sided breast cancer patients by tailoring and minimizing PTV expansion three-dimensionally utilizing 4D CT combined with on-board cone beam CT (CBCT). METHODS: We enrolled a total of 10 consecutive left-sided breast cancer patients to undergo PMRM-IMRT. We measured the intra-fractional CTV displacement attributed to respiratory movement by defining 9 points on the left chest wall and quantifying their displacement by using the 4D CT, and measured the inter-fractional CTV displacement resulting from the integrated effect of respiratory movement, thoracic deformation and set up errors by using CBCT. We created 3 different PMRM-IMRT plans for each of the patients using PTVt (tailored PTV expansion three-dimensionally), PTV0.5 and PTV0.7 (isotropic 0.5- cm and isotropic 0.7- cm expanding margin of CTV), respectively. We performed paired samples t test to establish a hierarchy in terms of plan quality and dosimetric benefits. P < 0.05 was considered statistically significant. RESULTS: The inter-fractional CTV displacement (2.6 ± 2.2 mm vertically, 2.8 ± 2.3 mm longitudinally, and 1.7 ± 1.2 mm laterally) measured by CBCT was much larger than the intra-fractional one (0.5 ± 0.5 mm vertically, 0.5 ± 1.0 mm longitudinally, and 0.3 ± 0.3 mm laterally, respectively) measured by 4D CT. Intensity-modulated radiotherapy with tailored PTV expansion based on inter-fractional CTV displacement had dosimetrical advantages over those with PTV0.5 or those with PTV0.7 owing to its perfect PTV dose coverage and better OARs sparing(especially of heart and left lung). CONCLUSION: The CTV displacement in PMRM-IMRT predominantly arises from inter-fraction rather than from intra-fraction during natural respiration and differs in 3 coordinate axes either inter-fractionally or intra-fractionally. Tailoring and minimizing PTV expansion three-dimensionally significantly improves the dosimetry of PMRM-IMRT for left-sided breast cancer patients.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Neoplasias Unilaterais da Mama , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Tomografia Computadorizada de Feixe Cônico , Feminino , Tomografia Computadorizada Quadridimensional , Humanos , Mastectomia , Mastectomia Radical Modificada , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias Unilaterais da Mama/diagnóstico por imagem , Neoplasias Unilaterais da Mama/radioterapia , Neoplasias Unilaterais da Mama/cirurgia
7.
Radiat Oncol ; 16(1): 8, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436018

RESUMO

BACKGROUND: This study aimed to evaluate the predictive potential of contrast-enhanced computed tomography (CT)-based imaging biomarkers (IBMs) for the treatment outcomes of patients with oesophageal squamous cell carcinoma (OSCC) after definitive concurrent chemoradiotherapy (CCRT). METHODS: Altogether, 154 patients with OSCC who underwent definitive CCRT were included in this retrospective study. All patients were randomised to the training cohort (n = 99) or the validation cohort (n = 55). Pre-treatment contrast-enhanced CT scans were obtained for all patients and used for the extraction of IBMs. An IBM score, was constructed by using the least absolute shrinkage and selection operator with Cox regression analysis, which was equal to the log-partial hazard of the Cox model in the training cohort and tested in the validation cohort. IBM nomograms were built based on IBM scores for individualised survival estimation. Finally, a decision curve analysis was performed to estimate the clinical usefulness of the nomograms. RESULTS: Altogether, 96 IBMs were extracted from each contrast-enhanced CT scan. IBM scores were constructed from 11 CT-based IBMs for overall survival (OS) and 8 IBMs for progression-free survival (PFS), using the LASSO-Cox regression method in the training cohort. Multivariate analysis revealed that IBM score was an independent prognostic factor correlated with OS and PFS. In the training cohort, the C-indices of IBM scores were 0.734 (95% CI 0.664-0.804) and 0.658 (95% CI 0.587-0.729) for OS and PFS, respectively. In the validation cohort, C-indices were 0.672 (95% CI 0.578-0.766) and 0.666 (95% CI 0.574-0.758) for OS and PFS, respectively. Kaplan-Meier survival analysis showed a significant difference between risk subgroups in the training and validation cohorts. Decision curve analysis confirmed the clinical usefulness of the IBM score. CONCLUSIONS: The IBM score based on pre-treatment contrast-enhanced CT could predict the OS and PFS for patients with OSCC after definitive CCRT. Further multicentre studies with larger sample sizes are warranted.


Assuntos
Quimiorradioterapia , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Biomarcadores , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Intensificação de Imagem Radiográfica , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade
8.
Front Oncol ; 11: 819047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174072

RESUMO

PURPOSE: Stereotactic body radiotherapy (SBRT) is an important treatment modality for lung cancer patients, however, tumor local recurrence rate remains some challenge and there is no reliable prediction tool. This study aims to develop a prediction model of local control for lung cancer patients undergoing SBRT based on radiomics signature combining with clinical and dosimetric parameters. METHODS: The radiomics model, clinical model and combined model were developed by radiomics features, incorporating clinical and dosimetric parameters and radiomics signatures plus clinical and dosimetric parameters, respectively. Three models were established by logistic regression (LR), decision tree (DT) or support vector machine (SVM). The performance of models was assessed by receiver operating characteristic curve (ROC) and DeLong test. Furthermore, a nomogram was built and was assessed by calibration curve, Hosmer-Lemeshow and decision curve. RESULTS: The LR method was selected for model establishment. The radiomics model, clinical model and combined model showed favorite performance and calibration (Area under the ROC curve (AUC) 0.811, 0.845 and 0.911 in the training group, 0.702, 0.786 and 0.818 in the validation group, respectively). The performance of combined model was significantly superior than the other two models. In addition, Calibration curve and Hosmer-Lemeshow (training group: P = 0.898, validation group: P = 0.891) showed good calibration of combined nomogram and decision curve proved its clinical utility. CONCLUSIONS: The combined model based on radiomics features plus clinical and dosimetric parameters can improve the prediction of 1-year local control for lung cancer patients undergoing SBRT.

9.
J Cancer ; 10(19): 4655-4661, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31528230

RESUMO

Objective: The applicability of the linear quadratic (LQ) model to local control (LC) modeling after hypofractionated radiotherapy to treat lung cancer is highly debated. To date, the differences in predicted outcomes between the LQ model and other radiobiological models, which are characterized by additional dose modification beyond a certain transitional dose (dT), have not been well established. This study aims to compare the outcomes predicted by the LQ model with those predicted by two other radiobiological models in stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC). Methods: Computer tomography (CT) simulation data sets for 20 patients diagnosed with stage Ⅰ primary NSCLC were included in this study. Three radiobiological models, including the LQ, the universal survival curve (USC) and the modified linear quadratic and linear (mLQL) model were employed to predict the tumor control probability (TCP) data. First, the dT values for the USC and mLQL models were determined. Then, the biologically effective dose (BED) and the predicted TCP values from the LQ model were compared with those calculated from the USC and mLQL models. Results: The dT values from the USC model were 29.6 Gy, 33.8 Gy and 44.5 Gy, whereas the values were 90.2 Gy, 84.0 Gy and 57.3 Gy for the mLQL model for 1-year, 2-year and 3-year TCP prediction. The remarkable higher dT values obtained from the mLQL model revealed the same dose-response relationship as the LQ model in the low- and high-dose ranges. We also found that TCP prediction from the LQ and USC models differed by less than 3%, although the BED values for the two models were significantly different. Conclusion: Radiobiological analysis reveals small differences between the models and suggested that the LQ model is applicable for modeling LC using SBRT to treat lung cancer, even when an extremely high fractional dose is used.

10.
Radiat Oncol ; 14(1): 111, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221159

RESUMO

BACKGROUND: To calculate the individualized fraction regime (IFR) in stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC) patients using the uncomplicated tumor control probability (UTCP, P+) function. METHODS: Thirty-three patients with peripheral lung cancer or lung metastases who had undergone SBRT were analyzed. Treatment planning was performed using the dose regime of 48 Gy in 4 fractions. Dose volume histogram (DVH) data for the gross tumor volume (GTV), lung, chest wall (CW) and rib were exported and the dose bin was multiplied by a certain percentage of the dose in that bin which ranged from 1 to 200% in steps of 1%. For each dose fraction, P+ values were calculated by considering the tumor control probability (TCP), radiation-induced pneumonitis (RIP), chest wall pain (CWP) and radiation-induced rib fracture (RIRF). UTCP values as a function of physical dose were plotted and the maximum P+ values corresponded to the optimal therapeutic gain. The IFR in 3 fractions was also calculated with the same method by converting the dose using the linear quadratic (LQ) model. RESULTS: Thirty-three patients attained an IFR using the introduced methods. All the patients achieved a TCP value higher than 92.0%. The IFR ranged from 3 × 10.8 Gy to 3 × 12.5 Gy for 3 fraction regimes and from 4 × 9.2 Gy to 4 × 10.7 Gy for 4 fraction regimes. Four patients with typical tumor characteristics demonstrated that the IFR was patient-specific and could maximize the therapeutic gain. Patients with a large tumor had a lower TCP and UTCP and a smaller fractional dose than patients with a small tumor. Patients with a tumor adjacent to the organ at risk (OAR) or at a high risk of RIP had a lower UTCP and a smaller fractional dose compared with patients with a tumor located distant from the OAR. CONCLUSIONS: The proposed method is capable of predicting the IFR for NSCLC patients undergoing SBRT. Further validation in clinical samples is required.


Assuntos
Algoritmos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/cirurgia , Modelos Estatísticos , Órgãos em Risco/efeitos da radiação , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Fracionamento da Dose de Radiação , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos
11.
Radiother Oncol ; 124(2): 256-262, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28764926

RESUMO

PURPOSE: To develop and validate prediction models of overall survival (OS) for head and neck cancer (HNC) patients based on image biomarkers (IBMs) of the primary tumor and positive lymph nodes (Ln) in combination with clinical parameters. MATERIAL AND METHODS: The study cohort was composed of 289 nasopharyngeal cancer (NPC) patients from China and 298 HNC patients from the Netherlands. Multivariable Cox-regression analysis was performed to select clinical parameters from the NPC and HNC datasets, and IBMs from the NPC dataset. Final prediction models were based on both IBMs and clinical parameters. RESULTS: Multivariable Cox-regression analysis identified three independent IBMs (tumor Volume-density, Run Length Non-uniformity and Ln Major-axis-length). This IBM model showed a concordance(c)-index of 0.72 (95%CI: 0.65-0.79) for the NPC dataset, which performed reasonably with a c-index of 0.67 (95%CI: 0.62-0.72) in the external validation HNC dataset. When IBMs were added in clinical models, the c-index of the NPC and HNC datasets improved to 0.75 (95%CI: 0.68-0.82; p=0.019) and 0.75 (95%CI: 0.70-0.81; p<0.001), respectively. CONCLUSION: The addition of IBMs from the primary tumor and Ln improved the prognostic performance of the models containing clinical factors only. These combined models may improve pre-treatment individualized prediction of OS for HNC patients.


Assuntos
Carcinoma/diagnóstico , Carcinoma/mortalidade , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/mortalidade , Biomarcadores Tumorais/análise , Carcinoma/diagnóstico por imagem , Carcinoma/terapia , Cetuximab/uso terapêutico , Quimiorradioterapia , China/epidemiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/terapia , Estadiamento de Neoplasias , Países Baixos/epidemiologia , Prognóstico , Modelos de Riscos Proporcionais , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
12.
Biomed Res Int ; 2017: 1436573, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28695127

RESUMO

PURPOSE: The consistency for predicting local control (LC) data using biophysical models for stereotactic body radiotherapy (SBRT) treatment of lung cancer is unclear. This study aims to compare the results calculated from different models using the treatment planning data. MATERIALS AND METHODS: Treatment plans were designed for 17 patients diagnosed with primary non-small cell lung cancer (NSCLC) using 5 different fraction schemes. The Martel model, Ohri model, and the Tai model were used to predict the 2-year LC value. The Gucken model, Santiago model, and the Tai model were employed to estimate the 3-year LC data. RESULTS: We found that the employed models resulted in completely different LC prediction except for the Gucken and the Santiago models which exhibited quite similar 3-year LC data. The predicted 2-year and 3-year LC values in different models were not only associated with the dose normalization but also associated with the employed fraction schemes. The greatest difference predicted by different models was up to 15.0%. CONCLUSIONS: Our results show that different biophysical models influence the LC prediction and the difference is not only correlated to the dose normalization but also correlated to the employed fraction schemes.


Assuntos
Fenômenos Biofísicos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Modelos Biológicos , Radiocirurgia , Idoso , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Onco Targets Ther ; 10: 2209-2217, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458564

RESUMO

OBJECTIVE: To compare the radiobiological response between simultaneously dose-escalated and non-escalated intensity-modulated radiation therapy (DE-IMRT and NE-IMRT) for patients with upper thoracic esophageal cancer (UTEC) using radiobiological evaluation. METHODS: Computed tomography simulation data sets for 25 patients pathologically diagnosed with primary UTEC were used in this study. DE-IMRT plan with an escalated dose of 64.8 Gy/28 fractions to the gross tumor volume (GTV) and involved lymph nodes from 25 patients pathologically diagnosed with primary UTEC, was compared to an NE-IMRT plan of 50.4 Gy/28 fractions. Dose-volume metrics, tumor control probability (TCP), and normal tissue complication probability for the lung and spinal cord were compared. In addition, the risk of acute esophageal toxicity (AET) and late esophageal toxicity (LET) were also analyzed. RESULTS: Compared with NE-IMRT plan, we found the DE-IMRT plan resulted in a 14.6 Gy dose escalation to the GTV. The tumor control was predicted to increase by 31.8%, 39.1%, and 40.9% for three independent TCP models. The predicted incidence of radiation pneumonitis was similar (3.9% versus 3.6%), and the estimated risk of radiation-induced spinal cord injury was extremely low (<0.13%) in both groups. Regarding the esophageal toxicities, the estimated grade ≥2 and grade ≥3 AET predicted by the Kwint model were increased by 2.5% and 3.8%. Grade ≥2 AET predicted using the Wijsman model was increased by 14.9%. The predicted incidence of LET was low (<0.51%) in both groups. CONCLUSION: Radiobiological evaluation reveals that the DE-IMRT dosing strategy is feasible for patients with UTEC, with significant gains in tumor control and minor or clinically acceptable increases in radiation-induced toxicities.

14.
Sci Rep ; 7(1): 120, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28273921

RESUMO

We aim to evaluate whether different definitions of esophagus (DEs) impact on the esophageal toxicity prediction for esophageal cancer (EC) patients administered intensity-modulated radiation therapy with simultaneous integrated boost (SIB-IMRT) vs. standard-dose IMRT (SD-IMRT). The esophagus for 21 patients diagnosed with primary EC were defined in the following four ways: the whole esophagus, including the tumor (ESOwhole); ESOwhole within the treatment field (ESOinfield); ESOinfield, excluding the tumor (ESOinfield-tumor) and ESOwhole, excluding the tumor (ESOwhole-tumor). The difference in the dose variation, acute esophageal toxicity (AET) and late esophageal toxicity (LET) of four DEs were compared. We found that the mean esophageal dose for ESOwhole, ESOinfield, ESOinfield-tumor and ESOwhole-tumor were increased by 7.2 Gy, 10.9 Gy, 4.6 Gy and 2.0 Gy, respectively, in the SIB-IMRT plans. Radiobiological models indicated that a grade ≥ 2 AET was 2.9%, 3.1%, 2.2% and 1.6% higher on average with the Kwint model and 14.6%, 13.2%, 7.2% and 3.4% higher with the Wijsman model for the four DEs. A grade ≥ 3 AET increased by 4.3%, 7.2%, 4.2% and 1.2%, respectively. Additionally, the predicted LET increased by 0.15%, 0.39%, 1.2 × 10-2% and 1.5 × 10-3%. Our study demonstrates that different DEs influence the esophageal toxicity prediction for EC patients administered SIB-IMRT vs. SD-IMRT treatment.


Assuntos
Neoplasias Esofágicas/radioterapia , Esôfago/efeitos da radiação , Radioterapia de Intensidade Modulada/efeitos adversos , Idoso , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terminologia como Assunto
15.
Br J Radiol ; 90(1070): 20160686, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27885853

RESUMO

OBJECTIVE: The aim of this study was to develop a nomogram for radiation-induced hypothyroidism (RHT) prediction. METHODS: We collected data from 164 patients with nasopharyngeal carcinoma (NPC) in our previous prospective study. Biochemical hypothyroidism was defined as a serum thyroid-stimulating hormone level greater than the normal value. We collected both clinical and dose-volume factors. A univariate Cox regression analysis was performed to identify RHT risk factors. Optimal predictors were selected according to the least absolute shrinkage and selection operator (LASSO). We then selected the Cox regression models that best balanced the prediction performance and practicability to build a nomogram for RHT prediction. RESULTS: There were 38 (23.2%) patients who developed RHT, and the median follow-up was 24 months. The univariate Cox regression analysis indicated that gender, minimum dose, mean dose (Dmean) and V25-V60 [Vx (%), the percentage of thyroid volume receiving >x Gy] of the thyroid were significantly associated with RHT. The variables of gender, receiving chemotherapy or not (chemo), Dmean and V50 were selected using the LASSO analysis. A nomogram based on a three-variable (gender, chemo and V50) Cox regression model was constructed, and its concordance index was 0.72. Good accordance between prediction and observation was showed by calibration curves in the probability of RHT at 18, 24 and 30 months. CONCLUSION: This study built a nomogram for RHT in NPC survivors by analyzing both clinical and dose-volume parameters using LASSO. Thus, the individual dose constraint could be achieved in a visual format. Advances in knowledge: This study used LASSO to more accurately address the multicollinear problem between variables. The resulting nomogram will help physicians predict RHT.


Assuntos
Hipotireoidismo/etiologia , Neoplasias Nasofaríngeas/radioterapia , Nomogramas , Lesões por Radiação/diagnóstico , Radioterapia/efeitos adversos , Adolescente , Adulto , Idoso , Carcinoma , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Modelos de Riscos Proporcionais , Estudos Prospectivos , Doses de Radiação , Distribuição por Sexo , Glândula Tireoide/efeitos da radiação , Adulto Jovem
16.
Sci Rep ; 6: 25959, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27173670

RESUMO

This study aimed to investigate the dosimetric characteristics of an isocentrically shielded RapidArc (IS-RA) technique for treatment of locally recurrent nasopharyngeal cancer (lrNPC). In IS-RA, the isocenter was placed at the center of the pre-irradiated brainstem (BS)/spinal cord (SC) and the jaws were set to shield the BS/SC while ensuring the target coverage during the whole gantry rotation. For fifteen patients, the IS-RA plans were compared with the conventional RapidArc (C-RA) regarding target coverage, organ-at-risk (OAR) sparing and monitor units (MUs). The relationship between the dose reduction of BS/SC and some geometric parameters including the angle extended by the target with respect to the axis of BS/SC (Ang_BSSC), the minimum distance between the target and BS/SC (Dist_Min) and the target volume were evaluated. The IS-RA reduced the BS/SC doses by approximately 1-4 Gy on average over the C-RA, with more MUs. The IS-RA demonstrated similar target coverage and sparing of other OARs except for slightly improved sparing of optic structures. More dose reduction in the isocentric region was observed in the cases with larger Ang_BSSC or smaller Dist_Min. Our results indicated that the IS-RA significantly improves the sparing of BS/SC without compromising dosimetric requirements of other involved structures for lrNPC.


Assuntos
Neoplasias Nasofaríngeas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria , Dosagem Radioterapêutica , Recidiva , Adulto Jovem
17.
Oncotarget ; 7(26): 40746-40755, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27203739

RESUMO

This study aims to compare the radiobiological response of two stereotactic body radiotherapy (SBRT) schedules for patients with stage I peripheral non-small cell lung cancer (NSCLC) using radiobiological modeling methods. Volumetric modulated arc therapy (VMAT)-based SBRT plans were designed using two dose schedules of 1 × 34 Gy (34 Gy in 1 fraction) and 4 × 12 Gy (48 Gy in 4 fractions) for 19 patients diagnosed with primary stage I NSCLC. Dose to the gross target volume (GTV), planning target volume (PTV), lung and chest wall (CW) were converted to biologically equivalent dose in 2 Gy fraction (EQD2) for comparison. Five different radiobiological models were employed to predict the tumor control probability (TCP) value. Three additional models were utilized to estimate the normal tissue complication probability (NTCP) value for the lung and the modified equivalent uniform dose (mEUD) value to the CW. Our result indicates that the 1 × 34 Gy dose schedule provided a higher EQD2 dose to the tumor, lung and CW. Radiobiological modeling revealed that the TCP value for the tumor, NTCP value for the lung and mEUD value for the CW were 7.4% (in absolute value), 7.2% (in absolute value) and 71.8% (in relative value) higher on average, respectively, using the 1 × 34 Gy dose schedule.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Adulto , Idoso , Fracionamento da Dose de Radiação , Feminino , Humanos , Pulmão/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Probabilidade , Radiometria , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
18.
PLoS One ; 11(5): e0156675, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27231871

RESUMO

PURPOSE: To study the dosimetric difference between fixed-jaw volumetric modulated radiotherapy (FJ-VMAT) and large-field volumetric modulated radiotherapy (LF-VMAT) for nasopharyngeal carcinoma (NPC) with cervical lymph node metastasis. METHODS: Computed tomography (CT) datasets of 10 NPC patients undergoing chemoradiotherapy were used to generate LF-VMAT and FJ-VMAT plans in the Eclipse version 10.0 treatment planning system. These two kinds of plans were then compared with respect to planning-target-volume (PTV) coverage, conformity index (CI), homogeneity index (HI), organ-at-risk sparing, monitor units (MUs) and treatment time (TT). RESULTS: The FJ-VMAT plans provided lower D2% of PGTVnd (PTV of lymph nodes), PTV1 (high-risk PTV) and PTV2 (low-risk PTV) than did the LF-VMAT plans, whereas no significant differences were observed in PGTVnx (PTV of primary nasopharyngeal tumor). The FJ-VMAT plans provided lower doses delivered to the planning organ at risk (OAR) volumes (PRVs) of both brainstem and spinal cord, both parotid glands and normal tissue than did the LF-VMAT plans, whereas no significant differences were observed with respect to the oral cavity and larynx. The MUs of the FJ-VMAT plans (683 ± 87) were increased by 22% ± 12% compared with the LF-VMAT plans (559 ± 62). In terms of the TT, no significant difference was found between the two kinds of plans. CONCLUSIONS: FJ-VMAT was similar or slightly superior to LF-VMAT in terms of PTV coverage and was significantly superior in terms of OAR sparing, at the expense of increased MUs.


Assuntos
Carcinoma/patologia , Carcinoma/radioterapia , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/radioterapia , Radioterapia de Intensidade Modulada/métodos , Adulto , Idoso , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Órgãos em Risco/efeitos da radiação , Radiometria , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/instrumentação , Adulto Jovem
19.
Sci Rep ; 6: 23543, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009235

RESUMO

This study aimed to evaluate the dosimetric outcomes of a base-dose-plan-compensation (BDPC) planning method for improving intensity-modulated radiotherapy (IMRT) for stage III lung cancer. For each of the thirteen included patients, three types of planning methods were applied to obtain clinically acceptable plans: (1) the conventional optimization method (CO); (2) a split-target optimization method (STO), in which the optimization objectives were set higher dose for the target with lung density; (3) the BDPC method, which compensated for the optimization-convergence error by further optimization based on the CO plan. The CO, STO and BDPC methods were then compared regarding conformity index (CI), homogeneity index (HI) of the target, organs at risk (OARs) sparing and monitor units (MUs). The BDPC method provided better HI/CI by 54%/7% on average compared to the CO method and by 38%/3% compared to the STO method. The BDPC method also spared most of the OARs by up to 9%. The average MUs of the CO, STO and BDPC plans were 890, 937 and 1023, respectively. Our results indicated that the BDPC method can effectively improve the dose distribution in IMRT for stage III lung cancer, at the expense of more MUs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Humanos , Masculino , Estadiamento de Neoplasias , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Resultado do Tratamento
20.
PLoS One ; 11(1): e0146604, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26734731

RESUMO

PURPOSE: To evaluate the dosimetric impacts of flattening filter-free (FFF) beams in intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for sinonasal cancer. METHODS: For fourteen cases, IMRT and VMAT planning was performed using 6-MV photon beams with both conventional flattened and FFF modes. The four types of plans were compared in terms of target dose homogeneity and conformity, organ-at-risk (OAR) sparing, number of monitor units (MUs) per fraction, treatment time and pure beam-on time. RESULTS: FFF beams led to comparable target dose homogeneity, conformity, increased number of MUs and lower doses to the spinal cord, brainstem and normal tissue, compared with flattened beams in both IMRT and VMAT. FFF beams in IMRT resulted in improvements by up to 5.4% for sparing of the contralateral optic structures, with shortened treatment time by 9.5%. However, FFF beams provided comparable overall OAR sparing and treatment time in VMAT. With FFF mode, VMAT yielded inferior homogeneity and superior conformity compared with IMRT, with comparable overall OAR sparing and significantly shorter treatment time. CONCLUSIONS: Using FFF beams in IMRT and VMAT is feasible for the treatment of sinonasal cancer. Our results suggest that the delivery mode of FFF beams may play an encouraging role with better sparing of contralateral optic OARs and treatment efficiency in IMRT, but yield comparable results in VMAT.


Assuntos
Neoplasias Nasais/radioterapia , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Órgãos em Risco , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia de Intensidade Modulada/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA